
DA45 16 FUL (TRIDNT HIGE LEVNEL LANGUAGE) REFERENCE MANUAL I/3
U) N NVA SUFC WEAPUNS CENTER DALGREN VA NT G NUBER .
JUL 84 NSWC/ R 84 101Ul LASFEDFG /NL

IIIIIEEIIIEEEI
IIII.EIEIII

11111. 28 2 5
2.2L _

I II - ! I1.8

t lt . LP l TNII '1 1 7

Ni

NSWC TR 84-101'

THLL REFERENCE MANUAL

Strategic Sya ms p me

TOMI

NAVAL SURFACE WEAPONS CENTER

Dahlgren, Virginia 22448

L lt •t _I

84" OS-

NSWC TR 84-101

THLL REFERENCE MANUAL

Hartmut G. Huber
Strategic Systems Department

July 1984

* NAVAL SURFACE WEAPONS CENTER4

Dahlgren, Virginia 22448

UNCLASSIFIED
IZW'dY CLASSIFICATION OF TMIS PAGE rho4n Dae Enet~rd)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I REPORT NUMBER j2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMmER

NSWC TR 84-101
4. TI"L.E fatd Subtitle) S, TYPE Or REPORT a PERIOD COVERED

THLL REFERENCE MANUAL Final

6. PERFORMING ORG. REPORT NUMeER

7. AUTi.OR(s) 6. CONTRACT O0 GRANT NUMOERaj

Hartmut G. Huber
3. PERFORMING ORGANIZATION NAME AND AODRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA 6 WORK UNIT N4UMBERS

Naval Surface Weapons Center (Code K53)
Dahlgren, VA 22448 36801

I I CONTRGL.ING OFFICE NAME AND ADDRESS t2. REPORT DATE

Strategic Systems Program Office July 1984
Washington, DC 20376 13. NUMSER OF PAGES

210
14. MONITORING AGENCY NAME A AOCRESS(t dlffernt from Controwllni Ofi@c) iS. SECURITY CLASS. (o thit e006tv)

UNCLASSIFIED
14. DECLASSIFICATION, DOWNGRAOING

SCIEDULE

16. OISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited

17. OISTRIUUTION STATEMENT (of the aebtract enttfed In Back 20, i dilerent from Report)

II. SUPeLEMENTARY NOTES

It. KEY WORDS (Continuo an Pover** side! n c eeiot- And identify by block nueiber)

TRIDENT Higher Level Language VAX 11/780 program
THLL procedure
TRIDENT Digital Control Computer (TDCC) block-structure

MC68000 Compiler
20. AUSTRACT fContinue an rev ... e id.eit n.c..eme and Identify by block number)

The TRIDENT Higher Level Language (THLL) is a procedure-oriented, block-
structured programming language used for writing operational software
for the TRIDENT Digital Control Computer (TDCC) and the MC68000 as well
as support software for the VAX 11/780. This Technical Report serves as
a complete reference manual for THLL. Target machine dependencies are,
in ceneral, explained in this document for each of the three target
mac ines. The runtime support and target machine unique features are
documented in References 1, 2, and 3.,,

DD , 1473 EOI-IOw OF I Nov 53 IS OOSOLETES 'N 0102.UP-01..601 UNCLASSIFIED
SECURITY NCLASSIFICATION OF TNIS PAGE (Wh.m Do#* Inemed)

NSWC TR 84-101

FOREWORD

This document was written in the Operational Support Branch (K53),
Submarine Launched Ballistic Missile (SLBM) Software Development Division
(K50), of the Strategic Systems Department (K) at the Naval Surface Weapons
Center (NSWC), Dahlgren, Virginia.

The purpose of this report is to serve as a complete reference manual to
the users of the TRIDENT Higher Level Language (THLL). It describes all
elements of THLL the user has to know in order to write THLL programs for any
one of the three target machines: the TRIDENT Digital Control Computer
(TDCC), the MC68000, or the VAX11/780. Target machine unique information can
be found in References 1, 2, and 3.

This report is based on NSWC Technical Report TR-3657, (Revised June
1978). Much of the material in TR-3657 was rewritten and reorganized. This
report was extensively reviewed by personnel in the Operational Support
Software Systems Group in K53, the Quality Assurance Branch (K52), and the
Operational Systems Branch (K54).

This project was funded by the Strategic Systems Program Office,
Washington, DC 20376, under task number 36801.

Questions, comments, and suggestions concerning the material presented in
this document should be directed to the Commander, Naval Surface Weapons
Center, ATTN: K53, Dahlgren, Virginia 22448.

Approved by:

THOMAS A. CLARE, Head
Strategic Systems Department

4

-iiti_

NSWC TR 84-101

CONTENTS

CHAPTER 1 INTRODUCTION 1-1
1. 1 INTRODUCTION TO THE LANGUAG.............1-1
1.2 DESCRIPTION OF NOTATION. 1-5
1.3 COMPATIBILITY OF TELL AND THLL II 1-5

CHAPTER 2 BASIC ELEMENTS OF THLL 2-1
2.1 OVERVIEW 2-1
2.2 THLL CHARACTER SET 2-2
2.3 LETTERS. 2-3
2.4 DIGITS 2-3
2.5 RESERVED WORDS 2-4
2.5.1 Operators. 2-4
2.5.2 Delimiters 2-4
2.6 IDENTIFIERS. 2-6
2.7 CONSTANTS. 2-7
2.7.1 Numbers. 2-7
2.7.1.1 Integers 2-8
2.7.1.2 Real Numbers 2-9
2.7.1.3 Scaled Real Numbers 2-10
2.7.2 Boolean Constants 2-10
2.7.3 Strings 2-11
2.8 COMMENT FORMS 2-11

CHAPTER 3 DATA DECLARATIONS. 3-1
3.1 ALLOCATION MODE. 3-1
3.2 SIMPLE VARIABLE DECLARATION. 3-2
3.3 ARRAY DECLARATION. 3-3
3.4 STACK DECLARATION.................3-5
3.5 SWITCH DECLARATION.................3-6
3.6 COMPONENT DECLARATIONS 3-7
3.6.1 First Form of Component Declarations.3-8
3.6.2 Second Form of Component Declarations3-9
3.6.3 Using Components. 3-11
3.6.4 Predefined Components 3-12
3.6.5 Indexed Components. 3-12
3.6.6 ALPHA Components. 3-13
3.7 PRESET DECLARATION. 3-13
3.7.1 Syntax of Presets 3-14
3.7.2 Semantics of Presets. 3-14
3.7.3 Compile Time Expressions. 3-19
3.7.4 Preset Expressions (SWA, LINKWORD, INITWORD) .3-20
3.8 SYNONYM DECLARATION 3-21
3.9 INSERT DECLARATION. 3-23

CHAPTER 4 EXPRESSIONS. 4-1
4.1 PRIMARY OPERANDS 4-2
4.2 VARIABLES. 4-2
4.2.1 Simple Variables 4-2

V

PREVIOS PAG

NSWC TR 84-101

4.2.2 Subscripted Variables4-2
4.2.3 Component Variables 4-3
4.2.4 Examples4-3
4.3 FUNCTIONS4-3
4.4 SIMPLE EXPRESSIONS *4-4
4.5 ASSIGNMENT EXPRESSIONS 4-5
4.6 CONDITIONAL EXPRESSIONS 4-7
4.7 CASE EXPRESSIONS 4-10

CHAPTER 5 STATEMENTS5-1
5.1 LABELED STATEMENTS5-1
5.2 PROPER STATEMENTS5-2
5.2.1 Blocks and Compound Statements 5-2
5.2.2 Conditional Statement 5-3
5.2.3 Case Statement 5-3
5.2.4 Loop Statements5-4
5.2.5 Null Statement 5-6
5.3 CHANGE OF CONTROL STATEMENTS 5-6
5.3.1 GOTO Statement 5-6
5.3.2 EXIT Statement 5-6
5.3.3 RETURN Statement 5-10
5.4 COMPILE UNITS 5-11

CHAPTER 6 PROCEDURE DECLARATIONS6-1
6.1 ACCESS PART6-2
6.2 TYPED PROCEDURES 6-3
6.3 FORMAL PARAMETERS6-3
6.4 DESCRIPTION OF FORMAL PARAMETERS 6-3
6.4.1 Value Part6-4
6.4.2 Specification Part6-5
6.4.2.1 Simple Variable, Device, or Format Specification 6-5
6.4.2.2 Stack Specification6-6
6.4.2.3 Array Specification6-6
6.4.2.4 Procedure Specification6-7
6.5 PROCEDURE HEAD EXAMPLE 6-9
6.6 GENERAL PROPERTIES OF PROCEDURES. 6-10
6.7 OPTIONAL ARGUMENTS 6-12
6.8 RETURNING A VALUE OF A PROCEDURE 6-13

CHAPTER 7 GLOBAL, EXTERNAL, AND COMMON DECLARATIONS 7-1
7.1 GLOBAL AND EXTERNAL DECLARATIONS 7-1
7.1.1 Global Declaration 7-1
7.1.2 External Declaration7-2
7.1.2.1 External Simple Variable and Format Declaration 7-2
7.1.2.2 External Stack Declaration 7-2
7.1.2.3 External Array Declaration 7-3
7.1.2.4 External Procedure Declaration 7-3
7.1.3 Effect and Use of Global and External7-4
7.1.4 Scope of Declarations 7-5
7.1.5 Procedures and Link Procedures 7-5
7.2 COMMON DECLARATION 7-5

vi

NSWC TR 84-101

CHAPTER 8 INPUT/OUTPUT 8-1
8.1 DEVICE DECLARATION 8-1
8.2 FORMAT DECLARATION 8-2
8.2.1 Semantics of Format Items on Input. 8-4
8.2.2 Semantics of Format items on Output 8-5
8.2.3 Format Examples.................8-6
8.2.3.1 WRITE Printer/Keyboard Formats..........8-6
8.2.3.2 READ Keyboard Formats. 8-7
8.2.3.3 WRITE Printer/Keyboard Format Examples. 8-8
8.2.3.4 READ Keyboard Format Examples. 8-8
8.2.4 Format Processing. 8-9
8.2.4.1 WRITE Printer/Keyboard Arrays and Implied Loops 8-11
8.3 INPUT/OUTPUT PROCEDURES 8-12

8.3.1 OPEN Procedure. 8-12
8.3.2 READ and WRITE Procedures 8-14
8.3.2.1 READ Procedure. 8-14
8.3.2.2 WRITE Procedure 8-15
8.3.3 CLOSE Procedure 8-16

8.3.4 IOWAIT Procedure. 8-16

CHAPTER 9 STANDARD PROCEDURES................9-1
9.1 PREDEFINED NUMERICAL FUNCTIO0NS...........9-1
9.2 STRING FUNCTIONS 9-6
9.3 STACK FUNCTIONS. 9-8
9.4 ARGUMENT FUNCTIONS 9-9
9.5 MISCELLANEOUS FUNCTIONS. 9-9

CHAPTER 10 EXAMPLES. 10-1

CHAPTER 11 REFERENCES. 11-1

APPENDIX A CHARACTER SETS A-1
A.1 THLL CHARACTER SET A-1
A.2 ASCII CHARACTER SET. A-3

APPENDIX B TYPE MATRICES.- 1
B .1 INTRODUCTION B-1
B.2 UNARY PLUS, UNARY MINUS. B-2
B.3 ADDITION, SUBTRACTION................-2
B.4 MULTIPLICATION, DIVISION B-3
3.5 MODULO AND BIT OPERATORS B-3
B.6 RELATIONAL OPERATORS- 4
B.7 LOGICAL OPERATORS.- 5
3.8 LOC OPERATOR- 5
B.9 LOCA OPERATOR.- 6
3.10 EXPONENTIATION- 7
3.11 ASSIGNMENT- 8

vii

NSWC TR 84-101

APPENDIX C TRICOMP COMPILER DIRECTIVES C-1
C.A GENERAL DESCRIPTION C-1
C.2 DIRECTIVE NOTATION C-2
C.3 LISTING DIRECTIVESC-3
C.4 COMPILER DIRECTIVESC-4

APPENDIX D TRICOMP COMPILER MESSAGES D-1
D.1 INTRODUCTION D-1
D.2 MESSAGES OUTPUT TO THE USER'S TERMINAL OR BATCH

LOG D-1
D.3 INFORMATIVE MESSAGES D-2
D.4 ERROR MESSAGES D-3
D.5 COMPILER ASSEMBLED OBJECT LISTING (BP TRICOMP

ONLY) D-18
D.6 COMPILER GENERATED STATISTICS (BP TRICOMP ONLY) D-19

APPENDIX E SYMBOL TABLE AND CROSS REFERENCE MAP EXPLANATIONS E-1
E.1 EXPLANATION OF SYMBOL TABLE E-1
E.2 EXPLANATION OF CROSS REFERENCE MAP E-4

APPENDIX F THLL PROGRAM REPORTS F-1
F.1 GLOBAL CROSS REFERENCE REPORT F-1
F.1.1 Producing a Global Cross Reference Report . . F-1
F.1.2 Reading a Global Cross Reference Report F-2
F.2 PROCEDURE CALL TREE REPORTF-4
F.2.1 Producing a Procedure Call Tree ReportF-4
F.2.2 Reading a Procedure Call Tree Report F-5
F.3 NESTED PROCEDURE CALL TREE REPORT F-7
F.3.1 Producing a Nested Procedure Call Tree Report .F-7

F.3.2 Reading a Nested Procedure Call Tree Report F-10

APPENDIX G THLL IN THE VAX/VMS ENVIRONMENT G-1
G.1 INTRODUCTION G-1
G.2 THE TRICOMP COMMAND G-1
G.2.1 Qualifiers G-1
G.2.2 Input To TRICOMPG-4
G.2.2.1 Compile Units (.THL Files) G-4
G.2.2.2 Insert Files (.THI Files) G-4
G.2.3 Output From TRICOMP (.TLS, .GXR, .TRE, Object

FILES) G-4
G.3 ORGANIZATION OF A THLL PROGRAMG-5
G.4 $SEVERITY RETURNED FROM TRICOMP G-6

DISTRIBUTION()

I
viii

| .I

iiI- n p I . . . "' i .. "- -" - . .

NSWC TR 84-101

TABLES

TABLE 2-1 THLL OPERATORS2-5

TABLE 2-2 DELIMITERS2-6

TABLE 2-3 INTEGERS 2-8

TABLE 3-1 PREDEFINED COMPONENTS 3-12

TABLE 4-1 OPERATOR PRECEDENCE 4-4

TABLE 4-2 TYPE CONVERSION4-7

TABLE 4-3 TYPE OF A SET OF EXPRESSIONS 4-9

TABLE 5-1 RETURN EXPRESSION TYPE 5-11

TABLE 8-1 DEVICE NAMES 8-2

TABLE 9-1 NUMERICAL FUNCTIONS 9-2

TABLE 9-2 PREDEFINED BIT FUNCTION CONDITION CODES 9-4

TABLE A-1 ASCII CHARACTER SET A-3

ix

- ..

NSWC TR 84-101

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION TO THE LANGUAGE

The TRIDENT Higher Level Language (THLL) is a procedure-oriented,
block-structured programming language. This Reference Manual provides a
complete description of the syntax and semantics of THLL.

The meaning of most features in THLL is independent of the particular
target machine on which a THLL program executes. Some features, however, do
depend on the target machine. Those dependencies are explained for each of
the following target machines: TRIDENT Basic Processor, TRIDENT MC68000, and
VAX.

When programs execute on a particular target machine the runtime
environment is determined by the underlying Operating System and a collection
of runtime support procedures which, in general, have machine-dependent
characteristics. The machine-dependent runtime environment for THLL programs
is described for each target machine in a separate document (References 1, 2,
and 3).

This introductory section describes, from an intuitive point of view, how
a THLL program is formed from certain basic elements. Precise details about
these elements can be found in later sections.

A THLL program that is acceptable to the THLL compiler (TRICOMP) for
translation into code for a target machine is called a compile unit.
Normally, many compile units are combined by a link loader system to form a
self-contained program that can be executed on the target machine.

Every THLL compile unit has the following structure:

IDI
BEGIN
Dl
D2

Dn;

END FINIS

~1-1

NSWC TR 84-101

The words BEGIN, END, FINIS are language keywords and have a fixed
meaning. Each Di, i-l,...,n, is a declaration, for example a data declaration
(see Chapter 3) or a procedure declaration (see Chapter 6). The first BEGIN
in a compile unit must be preceded by an identifier, ID1, which is used by the
compiler as the compile unit name. For programs which run on the BP, this
identifier is also used as the compile unit name by the Symbolic Debug System.

Each declaration defines the meaning of an identifier. A procedure
declaration defines an identifier to be the name of a procedure. Data
declarations define identifiers to be variables of various types or to be
names of more complex data structures such as arrays or stacks.

Examples:

A. Each of the following three lines represents a data declaration
terminated by a semicolon:

INTEGER I,K,INTVAR
REAL X,Y ;
REAL ARRAY A(5,10)

As long as these declarations are in effect (see scope of ide .iers,
Section 7.1.4), I, K, and INTVAR can be used as integer variables; X, Y as
real variables; and A(nl, n2) as a subscripted variable. Here nl and n2 are
integer numbers, 0 < nl < 5, 0 < n2 < 10, or expressions which evaluate at
runtime to integers in these ranges.

B. The following seven lines represent a procedure declaration:

DEFINE REAL PROCEDURE DUMMY(X,Y,Z)
VALUE X,Y,Z
INTEGER X ;
REAL Y,Z

BEGIN
RETURN IF X LES 0 THEN Y ELSE Z ENDIF
END

As long as this declaration is in effect, DUMMY is a procedure which can
be called by an expression such as:

DUMMY(2,3.14,-.5)

The numbers 2, 3.14, and -.5 are called the actual parameters. They may,
in general, be expressions which evaluate to numbers of the type INTEGER,
REAL, and REAL.

1-2

7I

NSWC TR 84-101

The above procedure declaration defines DUMMY to be the name of a
procedure of three arguments. X, Y, and Z are called formal parameters.
Their type and method of transmission are specified in the "specification
part," as shown in lines 2-4. All parameters are to be passed by value; X
has type INTEGER; and Y and Z have type REAL. The last three lines form the
body of the procedure representing the sequence of calculations necessary to
compute the value of DUMMY. In general, the body of a procedure is a sequence
of statements and expressions separated by semicolons and enclosed by
BEGIN-END brackets. In our example, this sequence consists of one statement
only, a return statement of the form:

RETURN e

where e is the conditional expression

IF X LES 0 THEN Y ELSE Z ENDIF

The value of e is the value of Y if X is negative, otherwise the value of Z.
The effect of the return statement is to define the value of DUMMY to be the
value of e and to return control to the point of call.

The concept of a procedure in THLL corresponds to the mathematical
concept of a function but is slightly different. The difference is that a
procedure may have side effects on the environment. This means that a
procedure can change the value of a variable and this change remains in effect
after control returns from the procedure. A second difference is that there
may not be a value defined for a procedure. A function, of course, always has
a value. An unvalued procedure is executed for its effect on the environment.
For simplicity, the concepts of procedure and function are used
interchangeably.

In any case, the action elements of the compile unit are always contained
in the body of a procedure. It is the procedure body that gives rise to
executable code. Declarations just inform the compiler about the meaning of
identifiers and do not cause code to be generated.

The action elements in a compile unit are statements and expressions. It
is important for the reader to grasp an intuitive understanding of the
difference between statements and expressions. Statements and expressions are
both executed as one or more elementary actions. An expression results in a
value, a statement does not.

1-3

NSWC TR 84-101

Examples:

1. X
2. x (Y 5) + 1
3. X-2
4. Y- (X" 1)
5. RETURN X - 1
6. GOTO L
7. BEGIN

XA+B
Y-X-I;

END

Examples 1-4 are expressions; examples 5-7 are statements. Examples 3
and 4 show that in THLL an assignment is an expression. The value of an
assignment expression is the value of the right side. Thus, the value of the
assignment X - 2 is 2. Similarly, the value of Y - (X - 1) is the value of X

1 1, which is 1.

Normally, a THLL compile unit contains one or more procedure
declarations. One procedure in a compile unit can be designated as the
procedure that receives control initially when the program containing the
compile unit is executed. Such a procedure must not have any arguments. The
designation of the start-up procedure is machine-dependent.

A THLL compile unit may contain no procedure declarations at all, only
data declarations. The compiled unit, of course, cannot be executed since it
does not contain any executable code. Its purpose is to define data to be
used by other compile units.

One of the most important concepts in THLL is "block." A block is a
statement of the following form:

BEGIN
Dl

Dn;
el

ek
END

where Dl; ...; Dn is a (possibly empty) sequence of declarations and
el; ...; ek is a non-empty sequence of expressions or statements (see Section
5.4). A block has two major effects. First, any identifier declared after
the BEGIN is made local to the block. The declared meaning of the identifier

1-4

NSWC TR 84-101

is valid within the block and all inner blocks (if not redefined), but is not
valid outside of it. This range of validity of a declaration is called the
scope of a declaration or the scope of the (declared) identifier. The second
effect of a block is to make the sequence of computations represented by
el; ...; ek one unit, called a compound sta~.jent. Since the elements of a
block are again statements, it follows that blocks and statements are
recursive in nature and have a nested structure.

Example:

BEGIN
INTEGER X,Y
X- I;
IF Y NEQ 0 THEN

BEGIN
REAL Z

END
ELSE

BEGIN

END
ENDIF
Y-2;

END

1.2 DESCRIPTION OF NOTATION

The following sections present the details of all language constructs in
a systematic fashion. Syntactic units are written as a name or as a phrase
enclosed in angle brackets < >. Examples are <identifier> or <simple
expression>. In defining language constructs for which there are alternative
choices, these choices appear in a list enclosed by curly braces (). In such
cases, one of the alternatives must be selected. If an item is optional, it
is enclosed by square brackets [1. If the optional item has alternatives,
the alternatives appear in a list within the brackets.

1.3 COMPATIBILITY OF THLL AND THLL II

THLL is used for TRIDENT I program development. For TRIDENT II an
enhanced version of THLL, called THLL II, will be used. Most THLL II
enhancements are extensions of THLL, making a THLL program a special case of a
THLL II program. However, the introduction of the delimiters ELSEIF,
NEXTCASE, and ENDDO into THLL II is not an extension.

1-5

--

NSWC Th 84-101

To make TRLL programs compatible with T1LL II programs, this Reference
Manual describes the delimiters ELSEIF, NEXTCASE, and ENDDO as they are used
in THLL II. Each compile unit that uses these delimiters must contain the
following synonym declarations that map these delimiters to the corresponding
delimiters for TULL:

SYNONYM ELSEIF - 1,1
SYNONYM NEXTCASE - /,;
SYNONYM ENDDO / /

1-6

/I

NSWC TR 84-101

CHAPTER 2

BASIC ELEMENTS OF THLL

2.1 OVERVIEW

On the lowest level, a THLL compile unit is a character string.
Characters are grouped together as items. Each item falls into one of the
following four categories:

A. Operators,

B. Delimiters,

C. Constants, and

D. Symbols (identifiers).

There is a fixed number of operators and delimiters. They are listed in
Tables 2-1 and 2-2. Sections 2.6 and 2.7 describe, respectively, which
character sequences are symbols and which are constants of various types.

Examples:

operators + =

delimiters IF ; PROCEDURE
constants 3 TRUE #* STRING CONSTANT *
symbols TRIDENT SUBR X

The above classifications are based on the meaning of items and on how
meanings are attached to the items.

Operators, delimiters, and constants each have a fixed meaning in the
language which is known by the compiler. The user has no mechanism for
changing this meaning. It can only be changed by modifying the compiler.
Operators and delimiters are also called reserved words of THLL.

Symbols, on the other hand, do not, in general, have any meaning by
themselves. They must be given a meaning by the user. Declarations provide
the mechanism for doing this.

2-1

-- W

NSWC TR 84-101

Some symbols have a predefined meaning known by the compiler; for
example, the names of standard functions such as SIN, COS, SWA, and SET.BIT or
the predefined components WHOLEW, DOUBLEW, and REALDW. These identifiers can
be used without defining them in a declaration.

Every symbol can be redefined by writing down a declaration at the
beginning of a block. The new meaning is in effect within the scope of the
declaration. Of course, the programmer should not specify two different
declarations for the same identifier within the same block.

A symbol which is used as a label in a compile unit is considered to be
defined as soon as it appears in a label position; that is, the symbol
precedes a colon (Section 5.1). For example:

DONE:

Apart from labels and predefined symbols, every identifier must be declared
somewhere by a declaration. Any references to an identifier must lie within
the scope of a valid declaration for the identifier. Otherwise the compiler
considers the symbol to be undefined.

2.2 THLL CHARACTER SET

The THLL character set consists of the following ASCII subset:

Uppercase letters A-Z

Numerals 0-9

The following special characters:

Character Name Character Name

Space. Period
I Exclamation point / Slash

Quotation mark : Colon
Number sign Semicolon
$ Dollar sign <> Angle brackets
% Percent sign W Equal sign
& Ampersand ? Question mark
* Apostrophe @ At sign
) Parentheses [Square brackets

* Asterisk Backslash
+ Plus sign A Circumflex

Comma Underline
Minus sign

2-2

IMaII

NSWC TR 84-101

There is no plus or minus sign (4) defined in ASCII and the circumflex
(A) is used to represent it. The TDCC devices KBDSS, CPRINT, and SPRINT

display the circumflex as the + character.

Not included in the THLL character set are the lowercase letters (codes
X'60' - X'7E') and the nonprintable characters (codes X'00' - X'lF' and
X'7E'). When these characters are used in a THLL source file they are treated
as follows:

A. Lowercase letters are treated in a machine-dependent manner:

BP, MC68000: Lowercase letters are converted to uppercase letters
(codes X'40' - X'5E') except when they appear in coments or remarks.

VAX: Lowercase letters are converted to uppercase letters (codes
X'40' - X'5E') except when they appear in THLL strings or in coments
or remarks.

B. Nonprintable characters are converted to question marks (?).

A table of ASCII characters is included in Appendix A.

2.3 LETTERS

Letters have no individual meaning. They are used to form identifiers
and strings.

2.4 DIGITS

Four sets of digits are available to the THLL user:

A. The binary digits 0 and 1,

B. The octal digits 0 through 7,

C. The decimal digits 0 through 9,

D. The hexadecimal digits 0-9 and A-F.

Digits are used in forming numbers, identifiers, and strings.

2-

I

NSWC TR 84-101

2.5 RESERVED WORDS

2.5.1 Operators

An operator denotes a function for which an infix notation is used
instead of a standard functional notation. For example:

operator infix notation functional notation

+ A + B + (A, B)

All operators yield values. Table 2-1 contains a complete list of all
operators.

The type of LOC X is POINTER, the type of LOCA X is INTEGER. The value
of LOC X (LOCA X) is the address (absolute address) of the THLL word or
doubleword containing X. The meaning of address and absolute address is
machine-dependent:

BP:
An address is a virtual address (see Reference 1). An absolute
address is an actual machine address. In general, these two values
are not identical.

MC68000:
An address and an absolute address are both an actual machine address.
These two values are always identical.

VAX:
An address and an absolute address are both a virtual address. These
two values are always identical.

2.5.2 Delimiters

Delimiters can be used to punctuate, to provide descriptive information,
and to indicate structure. Delimiters have fixed meanings and uses. Table
2-2 contains a complete list of delimiters.

The space is used as a delimiter between THLL items. It cannot be used

within THLL items.

Example:

If it is desired to compare two values X and Y, increase X by 5 if it is
not equal to Y, or decrease X by 1 if it is equal, the sequence of characters
would be as follows:

2-4

NSWC TR 84-101

IFXNEQYTHENX-A+5ELSEX-X-lENDIF

However, this string of characters as processed by the compiler does not
produce the desired code because there are no delimiters to distinguish
reserved words from variables, operators, etc. To produce the correct code,
the string could be:

IF X NEQ Y THEN X-X+5 ELSE X-X-1 ENDIF

TABLE 2-1. THLL OPERATORS

Class Mnemonic Meaning

Arithmetic + addition
Arithmetic - subtraction
Arithmetic * multiplication
Arithmetic / division
Arithmetic ** exponentiation
Arithmetic MOD remainder on division
Relational LES less than
Relational LEQ less than or equal
Relational EQL equal
Relational GRT greater than
Relational GEQ greater than or equal
Relational NEQ not equal
Logical OR or
Logical XOR exclusive or
Logical AND and
Logical NOT not
Assignment - assignment of value
Bit ANDB, BITAND and bits
Bit ORB, BITOR or bits
Bit XORB, BITXOR exclusive or of bits
Bit NOTB, BITNOT not bits
Addressing LOC address of variable
Addressing LOCA absolute address
Addressing ENTRYP ENTRYP X allows the

procedure X to be passed
as a parameter.

2-5

IL

NSWC TR 84-101

TABLE 2-2. DELIMITERS

ALPHA EXTERNAL OWN
ARITHMETIC FIELD POINTER
ARRAY FINIS PRESET
BEGIN FOR PROCEDURE
CASE FORMAT REAL
CASEEND GLOBAL REPEAT
COMEND GOTO RETURN
COMMENT HALF SPRINT
COMMON ICL STACK
COMPONENT IF STEP
CPRINT IFEND SWITCH
DEFINE INSERT SYNONYM
DEVICE INTEGER TASS
DO INTERRUPT THEN
DOUBLE KBDSS TO
ELSE LINK UNTIL
ELSEIF LOGICAL VALUE
END LOOPEXIT WHILE
ENDCASE MDF
ENDCOM MTF
ENDDO NEXTCASE
ENDIF NULL (
EXEC OFFSET)
EXIT OPTARG $

2.6 IDENTIFIERS

Identifiers may be used as labels, variables, procedures, switches,
formats, stacks, arrays, components, devices, or commons.

An identifier is a sequence of letters, digits, and dots. The first
character must be a letter. The last character must not be a dot. The A
maximum length of an identifier is 256 characters. A compile unit name is an
identifier that does not contain special characters.

Different target machines may allow additional special characters. Also,
the number of significant characters is machine-dependent:

BP:
The first eight characters are significant. A dot in an external name
is mapped into a dollar sign.

2-6

- I III. .. . I . .

NSWC TR 84-101

VAX:
The special characters dot, underscore, and dollar sign are allowed in
identifiers except in the first character position. The first 31
characters are significant. Special characters in external symbols
are not mapped to other characters.

MC68000:
The special characters dot, underscore, and question mark are allowed
in identifiers except in the first and last character position. The
first 31 characters are significant. The special character dot in an
external symbol is mapped to a question mark.

Examples:

Legal Illegal or not unique

R REGISTERI
PART.1 REGISTER2
SORT REGISTER3
XSL.20 MSL.3.
TOFl TEN SPOT
TWOPI 2PI
R234567.9 R234567.

All of the identifiers in column one are legal and unique. The three
identifiers beginning with REGISTER are legal but not unique for the BP since
the first eight characters are the same, MSL.3. is not legal for the BP or
MC68000 because of the terminating dot. TEN SPOT is not legal because of the
single space between the words. The 2PI is not legal because it begins with a
digit, not a letter.

2.7 CONSTANTS

THLL recognizes three kinds of constants: numbers, Boolean constants,
and strings. Each is assigned a type which is used when the constant appears
as an operand.

2.7.1 Numbers

Numbers fall into three categories: integers, real numbers, and
scaled real constants.

2-7

NSWC TR 84-101

2.7.1.1 Integers - There are four kinds of integers: binary, octal, decimal,
and hexadecimal. Each is formed from the appropriate kind of digits and a
scale part. The scale part may be omitted. If a scale part is used, it has
the following form:

K [3 decimal digit(s)

and specifies a power of 2. For example, K12 means that 2**12 (-4096) is to
be used as a factor of the number that has K12 as its scale part. Regardless
of the kind of integer, the sequence of decimal digits following K in a scale
part always specifies a decimal integer number. The possible formats for
integer numbers are listed in Table 2-3.

TABLE 2-3. INTEGERS

Integer Form

Binary B'binary digit(s) (scale part'

Octal C'octal digit(s) [scale part]'

Decimal decimal digit(s) [scale part]

Hexadecimal X'hexadecimal digit(s) [scale part]'

Examples of integer numbers (decimal equivalent in parentheses):

B'101' (5)
Binary integers B'1000K3' (64)

B'1ll0101K-5' (1)

C'743' (483)
Octal integers C'3K8' (768)

C'21K-l' (8)

15 (15)
Decimal integers 395K6 (25280)

42K-2 (10)

X'A4F' (2639)
Hexadecimal integers X'ICK8' (7168)

X'B531K+10' (47498240)

Note that spaces cannot appear between the characters representing an integer.
Also, a plus sign or minus sign may appear only in the scale part.

2-8

- :7 I

NSWC TR 84-101

An integer N, used as a literal, is assigned a type according to its

magnitude in a machine-dependent manner.

BP, VAX:

Input Form Magnitude of N Type

Binary, octal, hexadecimal 0 < N < 2**32 Integer (I)

Decimal 0 < N < 2**31 Integer (I)

Binary, octal, hexadecimal 2**32 < N < 2**64 Double (D)

Decimal 2**31 < N 4 2**63 Double (D)

MC68000:

Input Form Masnitude of N Type

Binary, octal, hexadecimal 0 < N < 2**16 Half (H)

Decimal 0 < N < 2**15 Half (H)

Binary, octal, hexadecimal 2**16 < N < 2**32 Integer (I)

Decimal 2**15 < N < 2**31 Integer (I)

Binary, octal, hexadecimal 2**32 < N < 2**64 Double (D)

Decimal 2**31 < N < 2**63 Double (D)

2.7.1.2 Real Numbers - Real numbers are formed from unsigned decimal integers

and/or decimal fractions followed by an exponent part. The exponent part
indicates a power of 10. The exponent part may be omitted. If the exponent
part is used, it has the following form:

EE + I decimal digit(s)

Examples of real numbers:

7. 23.4986E+2
.75 .438E-05

2-9

NSWC TR 84-101

As with integers, no spaces can occur between consecutive characters of
the number.

All real numbers are assigned the type real, designated by R.

The range of a real number X is machine-dependent:

BP:
.353E-9864 < X < .708E+9864 with approximately 15 decimal digits of
precision

MC68000:
.353E-9864 X < .708E+9864 with approximately 9 decimal digits of
precision

VAX:
.29E-38 < X < 1.7E+38 with approximately 16 decimal digits of
precision

2.7.1.3 Scaled Real Numbers - A scaled real number is formed from a real
number and a scale part. The real number is defined in Section 2.7.1.2, and
the scale part is defined in Section 2.7.1.1.

Examples:

3.5E-3K6 (.2240)
7.02E2K-1 (351.)

The same restrictions for spaces as stated for integers and real numbers
apply. Scaled real constants are of type R.

2.7.2 Boolean Constants

The Boolean constants are TRUE and FALSE. The logical values are
represented by bit patterns as follows:

TRUE is represented by X'FFFFFFFF', and

FALSE is represented by X'00000000'.

The Boolean constants are assigned the type integer (I).

2-10

NSWC TR 84-101

Any integer value used in the position of a Boolean value is interpreted
as either TRUE or FALSE. 0 is interpreted as FALSE, all other integers as
TRUE.

2.7.3 Strings

A string is a sequence of characters of the form:

#X <any sequence of characters not containing X> X
where X is any legal character.

The maximum length of a string is 256 characters.

Strings are used in preset statements, as actual parameters for
procedures, as right sides of assignment statements, and in FORMAT
declarations. String manipulation functions are discussed in the section on
standard procedures (Section 9.2).

Strings are assigned type ALPHA (A).

Examples:

#QTHIS IS A STRING.Q
#IIT CAN CONTAIN ANY CHARACTER: 2573, S; -A*B.1
A. SPACE. IN.THIS.STRING.TERMINATES.THE.STRING.

Even a space or # can be used as the special character to begin and end
the string.

2.8 COMMENT FORMS

A comment may have one of two forms:

Form 1:

COMMENT <any text not containing a ;>

Form 2:

/* <any text not including the character sequence */> */

A semicolon may not be used in Form 1 because it serves as the terminator of
the comment. However, the /* - */ serve to bracket the comment in Form 2 so

2-11

' - , , ,I.

(

NSWC TR 84-101

that a semicolon may be included in the text. Form 1 would appear more
frequently as a preface or general description of a compile unit or procedure.
Form 2 would be used to intersperse comments within the compile unit. Form 2
is also called a remark.

Example:

COMMENT ERRORMSG PRINTS AN ERROR MESSAGE

DEFINE PROCEDURE ERRORMSG (PHEAD, PBODY) ;
POINTER PHEAD ; /* POINTS TO AN ERROR ITEM HEADER */
POINTER PBODY ; /* POINTS TO AN ERROR ITEM BODY *1

BEGIN

END ; /* PROCEDURE ERRORMSG */

It should be noted that comments are not THLL items. They can be
included in a THLL compile unit to make it more readable to the user.
Semantically, they are equivalent to a blank.

I

2- 12 /

NSWC TR 84-101

CHAPTER 3

DATA DECLARATIONS

The primary purpose of declarations is to provide information to the
compiler about symbols used in the compile unit. In addition, the
declarations document the proper usage of the symbols to the user or reviewer
of a compile unit.

This chapter describes all data declarations. Symbols defined via data
declarations can be used for referencing data in a compile unit. These
include simple variables, arrays, stacks, components, presets, and synonyms.

An identifier which is used as a label need not be declared. All other
identifiers are either predefined or must be declared via a declaration. An
identifier cannot represent more than one entity in a single block.

Each declaration form is discussed in the following sections.

3.1 ALLOCATION MODE

Variables have an allocation mode which is either OWN or shared. Any
variable declaration which does not contain the reserved word OWN is shared.

OWN variables are allocated statically at compile time and can be preset
to initial values. Shared variables are allocated dynamically at execution
time upon entrance into the block that contains their declarations. The
memory locations of shared variables are not known at compile time.
Therefore, shared variables cannot be preset.

If a variable should be available for use throughout a sequence of nested
blocks or for examination using a debug system, it should be declared OWN.

The keyword OWN may either precede or follow the type specification in
the declaration for a simple variable, array, or stack.

3-1

NSWC TR 84-101

3.2 SIMPLE VARIABLE DECLARATION

A simple variable declaration defines an identifier to be a variable of a
specific type. The following six types are available for specifying the type
of a simple variable:

A. HALF - an integer quantity of a machine-dependent size:

BP, VAX: The size is 32 bits.

MC68000: The size is 16 bits.

B. INTEGER - a 32-bit integer quantity

C. DOUBLE - a 64-bit integer quantity

D. REAL - a floating point quantity

E. POINTER - an address quantity

F. ALPHA - a character string quantity

A declaration for a simple variable not of type ALPHA has the following
form:

[OWN] type idl, ... , idn

where type is one of the keywords HALF, INTEGER, DOUBLE, REAL, or POINTER.
The keyword OWN may either precede or follow the type specification in the
above declaration.

A declaration for a simple variable of type ALPHA has the following form:

[OWN] ALPHA idl(ll), ... , idn(ln)

The keyword OWN may either precede or follow the type specification in the
above declaration. The length of the ALPHA variable in units of characters is
specified as an integer constant enclosed in parentheses following the
variable name. The maximum number of characters that can be stored into the
ALPHA variable is length+l. If a set of consecutively listed variables have
the same length, then only the first variable in this set has to have a length
specification. The variables following it are considered to have the same
length until a new length is specified.

The manner in which characters are stored in an ALPHA variable is
machine-dependent.

3-2

NSWC TR 84-101

BP, MC68000:
Characters are stored into successive words, four characters per word
from left to right.

VAX:
Characters are stored into successive words, four characters per word
from right to left.

Strings are implemented exactly like ALPHA variables. The difference is
that strings are constant and cannot be changed.

The variable specified by an identifier can only assume values of the
declared type by assignment or by preset declaration. If the variable
receives an assigned value, automatic type conversion occurs if the right side
expression has a different type.

Examples of variable declarations:

INTEGER K,LOOP,RATE
DOUBLE OWN STATE ;
OWN REAL RANGE,LXO,BEARING
POINTER BUFFER.AIM.POINT ;

Examples of ALPHA declarations:

ALPHA MARS(5),M(4),N
ALPHA OWN TREE (40)

Note the change of length from MARS to M. Since no length is indicated for N,
it has the same length as M. MARS has six characters; M and N each have five
characters.

In both sets of examples, note that OWN allocation mode is included in
some of the declarations.

3.3 ARRAY DECLARATION

An array declaration defines an identifier to be the name of an array.
Array declarations provide information concerning the type, name, size, and
allocation mode of arrays.

An array is a data structure consisting of a collection of data elements
that have the same type and that can be accessed via subscripted variables.
THLL provides for one-, two-, and three-dimensional arrays. Elements of these
arrays are accessed via subscripted variables with one, two, or three
subscripts respectively.

3-3

b.

NSWC TR 84-101

The following types are available for arrays:

HALF - an integer quantity of a machine-dependent size
BP, MC68000: The size is 16 bits.
VAX: The size is 32 bits.

INTEGER, DOUBLE, REAL, POINTER

An array declaration has the following form:

[OWN] type ARRAY idl(sizel), ..., id(size)

where idl, ..., id are identifiers declared as arrays. The keyword OWN may
either precede or follow the type specification in an array declaration. Each
identifier is followed by a size specification in the form of one or two or
three integer numbers, separated by commas and enclosed in parentheses.

If size is of this form:

nl,n2,n3

then

0 ... n1 is the range of the first subscript,
0 ... n2 is the range of the second subscript, and
0 ... n3 is the range of the third subscript.

If in an array declaration a set of consecutively listed array names has
the same number of dimensions and for each dimension the same range, then only
the first array name in this collection needs a size specification. For the
remaining names, the same size is assumed by default until a new size is
specified.

Example:

INTEGER ARRAY A(10),B,C,D(20,5),E

Here A, B, and C are one-dimensional arrays with 11 elements each, the
subscript varying between 0 and 10; D and E are two-dimensional arrays, the
first subscript varying between 0 and 20, the second between 0 and 5.

It should be noted that the size of arrays is specified in units of
elements. This means two THLL words per element for REAL and DOUBLE arrays,
one THLL word per element for INTEGER and POINTER arrays.

3-4

,iV

NSWC TR 84-101

Arrays are stored in memory row by row according to the following scheme:

A(il,i2,i3) is the k'th data item from the origin A(0,O,0), where

k - i3 + (N3 + 1)*(i2 + (N2 + 1)*il)

and Ni, N2, N3 are the highest values for the first, second, and third
subscripts, respectively.

3.4 STACK DECLARATION

A stack declaration defines an identifier to be the name of a stack.
Stack declarations provide information concerning the type, name, size, and
allocation mode of stacks.

A stack is a data structure consisting of a collection of data elements
that have the same type. An element can be added to the data structure by
pushing it down on the stack, the element on top of the stack can be removed
by popping it off the stack. In addition, an element on the stack can be
accessed as a subscripted variable with one subscript. The subscript n
identifies the n'th element on the stack counting down from the top. The top
element is identified by the subscript 0.

The following types are available for stacks:

HALF, INTEGER, DOUBLE, REAL, POINTER

The elements of a HALF stack have a machine-dependent size.

BP, VAX:
The size is 32 bits.

MC68 000:
The size is 16 bits.

A stack declaration has the following form:

(OWN] type STACK idl(sizel), ..., id(size)

where idl, ..., id are identifiers declared as stacks. The keyword OWN may
either precede or follow the type specification of the above declaration.
Each identifier is followed by a size specification in the form of one integer
number enclosed in parentheses. If this number has the value n, then a
maximum of n+l data elements can be stored on the stack.

3-5

1. .

NSWC TR 84-101

If in a stack declaration, a set of consecutively listed stack names has
the same size then only the first stack name in this collection needs a size
specification. For the remaining names, the same size is assumed by default
until a new size is specified.

Example:

REAL STACK TIMES(14),COST,AZ(4)

Here, TIMES and COST are REAL stacks with a maximum of 15 elements each. AZ
is a REAL stack with a maximum of five elements.

It should be noted that the size of stacks is specified in units of
elements. This means two THLL words per element for REAL and DOUBLE stacks,
one THLL word per element for INTEGER and POINTER stacks.

3.5 SWITCH DECLARATION

A SWITCH declaration defines an identifier to be a switch identifier. A
switch identifier represents a collection of labels. Each label in this
collection can be referenced in the compile unit by using the switch
identifier and a subscript value.

A switch declaration has the following form:

SWITCH id - label-list

where label-list is a list of labels separated by commas.

The effect of this declaration is that the identifier following the
reserved word SWITCH is associated with the sequence of labels to the right of
the delimiter -. Any label listed in label-list can be referenced in the
compile unit as a "subscripted label variable" of the form id(n) where n is
the position number of the label in the label-list. The position number
starts with 1 for the first label in label-list. If k is the position number
of the last label in the list then all integer values less than 1, equal to k,
or greater than k identify the last label.

Example:

SWITCH PATH - PAR.A,PAR.B,PAR.C,ERROR

Within the scope of PATH

GOTO PATH(N)

3-6

NSWC TR 84-101

transfers control to:

PAR.A if N - 1,
PAR.B if N - 2,
PAR.C if N - 3, and
ERROR otherwise.

It should be noted that the occurrence of an identifier in a switch list

does not define this identifier as a label. A label is always defined by its
occurrence as a label of a statement and its scope is the enclosing block in
which this statement occurs. Therefore, a switch declaration must be within

the scope of all labels that occur in its label-list.

The use of the SWITCH is discouraged in structured programming (see
Reference 4 for further information).

3.6 COMPONENT DECLARATIONS

A component declaration defines an identifier to be the name of a

component.

Components are typically used in the design of a "record" as a collection
of logically related data of different types-that are allocated as a group in
a block of words. Any member of this group of data in the record can be
accessed symbolically via a "component variable":

C (p)

where C is the component name of the member and p is a pointer value that

identifies the origin of the record. The user should distinguish between the
concept component, in the example C, and component variable, in the example
C (p).

A component identifies a field relative to an origin. The field may be

part of a word or one word or two words and is located at a fixed offset from
an arbitrary origin.

Each component has four characteristics:

type of value,

offset from origin,

field size, and

sign extension.

3-7

NSWC TR 84-101

Correspondingly, a component declaration must specify this information for a
component identifier. Whenever a type keyword appears as part of a component
declaration it means, with one exception, that the component value has that
type. The exception is ALPHA. ALPHA components have the type INTEGER. They
are explained in a separate section below.

THLL allows the user to organize the common information in the
declarations of a set of component identifiers in two different ways.

3.6.1 First Form of Component Declarations

DOUBLE and REAL components are defined as follows:

type COMPONENT id (OFFSET n)

where

type is one of the keywords DOUBLE, REAL;

id is the component identifier; and

n is the offset of the double or real data element from an origin in
units of THLL words.

INTEGER and POINTER components are defined as follows:

type COMPONENT id (sext FIELD (sb, nb), OFFSET n)

where

type is one of the keywords INTEGER, POINTER;

id is the component identifier;

sext is one of the keywords ARITHMETIC, LOGICAL. It can be omitted,
in which case the default LOGICAL is assumed;

sb is the start bit of the field;

nb is the size of the field in bits; and

n is the offset of the field in THLL words. The offset specification
can be omitted in which case the offset 0 is assumed by default.

sb and nb are integer numbers, 0 < sb < 32, 0 <nb < 32. They may be
omitted in which case sb - 0, nb - 32 is assumed by default. The
offset n is an integer number and may be negative.

3-8

K . V

NSWC TR 84-101

The sign extension keyword ARITHMETIC means that the value of the
component variable is defined as the bit pattern in the field sign extended to
a full THLL word. If the leading bit in the field is 0, all bits to the left
of the field in the THLL word are 0; if the leading bit of the field is 1,
then all bits to the left of the field in the THLL word are 1. Hence, an
arithmetic component designates a signed integer number.

The sign extension keyword LOGICAL means that the value of the component
variable is defined as the bit pattern in the field extended with zeros to the
left to a full THLL word. Hence, a logical component designates a logical bit
pattern or an inherently positive integer quantity such as a pointer.

3.6.2 Second Form of Component Declarations

The second form of a component declaration allows the user to specify
common characteristics for a list of component identifiers. A complete
component declaration in this form consists of three parts:

type COMPONENT id-list
sext FIELD (sb, nb) FOR id-list ; F
OFFSET n FOR id-list

where

type is one of the keywords INTEGER, DOUBLE, REAL, POINTER;

id-list is a list of identifiers separated by commas;

sext is one of the keywords ARITHMETIC, LOGICAL. It can be omitted,
in which case the default LOGICAL is assumed;

sb is the start bit of the field;

nb is the size of the field in bits; and

n is the offset of the field in units of THLL words. The offset
specification can be omitted, in which case the offset 0 is assumed by
default.

Each part of the component declaration in this form defines the named
characteristic for a list of identifiers. The ranges for sb, nb, and n as
well as the meaning of ARITHMETIC and LOGICAL is the same in this case as for
the first form of component declarations.

If this form is used for REAL or DOUBLE components, the field
specification together with the sign extension should be omitted.

3-9

NSWC TR 84-101

Examples:

The following two sets of component declarations are equivalent. Each
defines four bytes BYTE1, BYTE2, BYTE3, and BYTE4 as logical bit patterns
allocated from left to right in the second word after an origin.

/* FIRST SET */
INTEGER COMPONENT BYTE1,BYTE2,BYTE3,BYTE4
OFFSET 2 FOR BYTE1,BYTE2,BYTE3,BYTE4
FIELD (0,8) FOR BYTE;
FIELD (8,8) FOR BYTE2
FIELD (16,8) FOR BYTE3
FIELD (24,8) FOR BYTE4 ; /* END OF FIRST SET */

/* SECOND SET */
INTEGER COMPONENT BYTEl (FIELD(0,8), OFFSET 2)
INTEGER COMPONENT BYTE2 (FIELD(8,8), OFFSET 2)
INTEGER COMPONENT BYTE3 (FIELD(16,8), OFFSET 2)
INTEGER COMPONENT BYTE4 (FIELD(24,8), OFFSET 2) ;
/* END OF SECOND SET */

The following set of component declarations defines a record as a group
of logically related data. The example describes a simplified version of an
entry into a spelling table.

DOUBLE COMPONENT SPL.SYMBOL (OFFSET 0)

/* EIGHT CHARACTERS, LEFT JUSTIFIED, BLANK FILLED */
POINTER COMPONENT SPL.NEXT (OFFSET 2) ;

/* POINTS TO NEXT ENTRY WITH SAME HASH ADDRESS */
INTEGER COMPONENT SPL.SYNON (FIELD (0,1), OFFSET 3)

/* CURRENTLY ACTIVE SYNONYM LEFTSIDE */
INTEGER COMPONENT SPL.OPREP (FIELD (24,8), OFFSET 3)

/* OPERATOR CODE, 0 FOR SYMBOLS */
POINTER COMPONENT SPL.PM (OFFSET 4)

/* POINTS TO SYMBOL TABLE ENTRY REPRESENTING
CURRENT MEANING */

The data structure and its components to which the above set of
declarations provides symbolic access can be visualized as shown below:

3-10

IMOWN

NSWC TR 84-101

0

SPL.SYMBOL -

SPL.NEXT 2

S ORP 3

SPL.PM 4

S stands for SPL.SYNON and OPREP stands for SPL.OPREP. The field
specification for the SPL.PM component is omitted, therefore the field is by
default a full THLL word.

The entire spelling table consists of entries of this form. The subsets
of the entries that have the same hash code for their names are linked
together into a linked list via the pointer field SPL.NEXT. If the name is a
symbol, then a pointer is provided to a symbol table record that contains all
relevant information about the symbol.

3.6.3 Using Components

When a component variable is used for its value then, for REAL and DOUBLE
components, the content of the component field is the value of the component
variable. For INTEGER and POINTER components, the value is defined as the
content of the field expanded to a one word quantity that has the type of the
component. The expansion fills the new bit positions either with zeros or
with the leading bit of the bit pattern in the field depending on whether the
sign extension is LOGICAL or ARITHMETIC.

When a component variable is used on the left side of an assignment, the
value of the right side is converted to the type of the component and stored
into the component field. If the field is not a full word or a double word,
then the converted value is truncated and the right-most portion that fits
into the field is stored. This is the semantics of the assignment to
component variables. No checks are performed if the truncation causes
information to be lost. It is the user's responsibility to design the
components such that their field sizes can accommodate all possible values for
the particular application.

Components cannot be declared GLOBAL. If the same component declarations
are to be used in several compile units, then the component declarations
should be collected in an insert file and included in each compile unit where
needed via the INSERT declaration (see Section 3.9).

3-11

NSWC TR 84-101

It should be noted that a component declaration does not cause any
storage allocation such as a simple variable or array declaration. The
function of components is only to provide symbolic names for fields relative
to an arbitrary origin.

3.6.4 Predefined Components

Three standard component identifiers are predefined in THLL. Each may be
used without any declarations (see Table 3-1).

TABLE 3-1. PREDEFINED COMPONENTS

Name Type Offset Field

WHOLEW I 0 (0,32)

DOUBLEW D 0 (0,64)

REALDW R 0 (0,64)

3.6.5 Indexed Components

If C is a component and P is a pointer valued expression, then C(P) is a
variable whose value is contained in the field as specified in the component
declaration for C, relative to the address pointed at by P.

P

WORD OFFSET W

FIELD SIZE S

START BIT B

We call this field the compovent field of index 0 and picture the
remaining bits of this word and the bits of all following words as one
continuous bit sequence. Then the component field of index N, referred to as
C(P,N), is a field of size S, starting N*S bits to the right of the field for
index 0. C(PO) is equivalent to C(P). The component variable C(P,N) is
called an indexed component. N may not be negative.

3-12

L

NSWC TR 84-101

To avoid word boundary problems, the start bit B and the field size S are
restricted by the following conditions: 64 MOD S - 0 and B HOD S - 0. This
means that S must divide both 64 and B. Hence, S can only be 1, 2, 4, 8, 16,
32, or 64.

3.6.6 ALPHA Components

For portability reasons, it is desirable to manipulate character
sequences in ALPHA variables in a machine-independent manner even though these
character sequences may be represented differently on different target
machines. The ALPHA component serves this purpose.

The declaration:

ALPHA COMPONENT id (OFFSET n)

defines the identifier id as the name of an integer component with a logical
field of eight bits located in the n'th word from an origin. The location
within the word as well as the direction of indexing is machine-dependent.

BP, MC68000:
The field is the left-most byte in the word and indexing proceeds to
the right as for all other indexed components.

VAX:
The field is the right-most byte in the word and indexing proceeds to
the left. This is different from all other indexed components on the
VAX but it is in accordance with the storage of characters in an ALPHA
variable on the VAX.

ALPHA component variables can only be used as indexed component
variables. This means that the user should always write:

CA(p,i)

when referencing an ALPHA component CA, even when the index i is 0.

3.7 PRESET DECLARATION

The preset declaration is used to initialize OWN variables at compile
time. Simple, subscripted, and component variables may be preset. However,
subscripted variables using a stack identifier cannot be preset.

3-13

NSWC TR 84-101

3.7.1 Syntax of Presets

Two forms of preset declarations are provided, a simple preset
declaration and a compound preset declaration.

A. A simple preset declaration has the form:

PRESET preset-statement

B. A compound preset declaration has the form:

PRESET
BEGIN
preset-statement

preset-statement
END

Two kinds of preset-statements are allowed:

A. var - el, ..., ek

B. var TO var - el, ..., ek

In these statements, var can be a simple variable (SV), a subscripted
variable using an array identifier (ASUB), a component variable (COHP), or an

indexed component variable (ICOMP). Each expression ei must be evaluatable at
compile time and must not be an assignment expression.

3.7.2 Semantics of Presets

The left side of a preset statement always specifies the OWN storage area
for a symbol or a part of it. Presetting takes place in this storage area
only.

If the left side is an SV or an ASUB, then the symbol is the simple
variable id or the array id, respectively. If the left side is a COMP or
ICOMP, say C(pe,n), then the symbol is the symbol specified by the value of
the pointer expression pe; e.g., in the simplest case pe may be LOC B(0),
where B is a one-dimensional OWN array, or pe may be a pointer that was
previously preset to LOC B(O). A pointer that is used for presetting a
component must always be relative to a THLL symbol. Presetting of a component
takes place in the storage area for this symbol.

3-14

NSWC TR 84-101

If the left side is a range varl to var2, then the symbol specified by
varl and by var2 must be the sane and presetting takes place in the storage

area for this symbol only.

Let S be the symbol specified by the left side. A storage element is

defined to mean one halfword, one word, or one doubleword according to the
following table:

Type of left side Machine Size of storage element

HALF MC68000 16 bits
VAX 32 bits

BP 16 bits for subscripted
variables

32 bits for other variables

INTEGER, POINTER any 32 bits
DOUBLE, REAL any 64 bits

Let NE be the number of storage elements left in the storage area for S,

starting at the point specified by the left side. Similarly, let NF be the
number of fields left in the storage area for S if the left side is an ICOMP.
The field size is as defined in the component declaration. If the left side

is a range, let NR be the number of elements (for ASUB and COMP) or the number
of fields (for ICOMP) in the range. Then the above preset statements (1) and
(2) have the following meaning:

left side el ... , ek

Left Side Meaning

SV, type ALPHA The ALPHA variable is preset to el.

Only one r _;t side element el is used.

SV, other types One storage element is preset to el.
Only one right side element el is used.

ASUB i - min(k,NE) successive storage elements
are fully preset to el, ei.

COMP The same field in i - min(k,NE)
successive storage elements is preset to
el, ..., ei (vertical sequence).

ICOMP i - min(k,NF) successive fields are
preset to el, ... , ei (horizontal

sequence).

3-15

NSWC TR 84-101

ASUB TO ASUB NR successive storage elements are preset
to el ... , eNR if NR < k,
to e1, ek, ek, ..., ek

otherwise.

COMP TO COMP The same field in NR successive storage
elements is preset
to el ... , eNR if NR < k,

to el, ... , ek, ek, ... , ek

otherwise (vertical sequence).

ICOMP TO ICOMP NR successive fields are preset
to el, ... , eNR if NR < k,
to el, ... , ek, ek, ..., ek
otherwise (horizontal sequence).

In each case, if the number of preset expressions on the right side is
greater than the number of storage elements or fields in the storage area for
the symbol specified by the left side, then an error message is issued. Also,
presetting of fields or elements more than once and presetting of overlapping
fields or elements are not allowed.

It should be noted that the semantics of presets for component variables
on the left side depends on whether the component variable is indexed or not.
If not indexed, then the next field to be preset is the field, as defined for
the component, in the next storage element of the data area; if indexed then
the next field to be preset is the adjacent field that has the size of the
component. This distinction is also made when the index of the component
variable is 0.

ALPHA component variables must always be indexed. This means that a
simple preset statement with an ALPHA component variable on the left side
always presets a sequence of adjacent fields if more than one field is preset.
The case in which the same field in a sequence of array elements is preset
cannot arise.

Presetting of simple and subscripted variables can always be accomplished
using component variables on the left side. The following table lists the
different cases and the semantically equivalent replacements of simple and
subscripted variables by component variables.

INTEGER COMPONENT CI (FIELD (0,32), OFFSET 0)
DOUBLE COMPONENT CD (OFFSET 0)
REAL COMPONENT CR (OFFSET 0)
POINTER COMPONENT CP (FIELD (0,32), OFFSET
INTEGER COMPONENT CLH (FIELD (0,16), OFFSET 0)
INTEGER COMPONENT CRH (FIELD (16,16), OFFSET 0)

3-16

NSWC TR 84-101

Left side variable X Replaceable by

SV, ASUB type I CI(LOC X)

Sv, ASUB type D CD(LOC X)

SV, ASUB type R CR(LOC X)

SV, ASUB type P CP(LOC X)

ASUB type H This case is machine-dependent:

BP:
CLH(LOC X) if X specifies the left
half of a THLL word,

CRH(LOC X) if X specifies the right
half of a THLL word.

MC68000:
CLH(LOC X)

VAX:
CI(LOC X)

SV type H This case is machine-dependent:

BP, VAX:
CRH(LOC X)

MC68000:
CLH(LOC X)

Conversely, presets using component variables on the left side cannot, in
general, be accomplished using only simple and subscripted variables.

Examples:

OWN HALF Y1,Y2,Y3
OWN HALF ARRAY Al (20),A2
OWN INTEGER ARRAY B(5),Bl,C,D,E,F,G,I,K,L
INTEGER COMPONENT CI (FIELD (0,32), OFFSET 0)
INTEGER COMPONENT CLII (FIELD (0,16), OFFSET 0)
INTEGER COMPONENT CRH (FIELD (16,16), OFFSET 0)
DOUBLE COMPONENT CD (OFFSET 0)
ALPHA COMPONENT CA (OFFSET 0)

3-17

NSWC TR 84-101

PRESET
BEGIN
A1(0) " 10,20,30 ; /* BPMC68000: First 3 halfwords

are set to 10,20,30
VAX: First 3 words are set
to 10,20,30 */

A2(0) TO A2(12) " 10,20,30 ; /* BP,MC68000: First 13 halfwords
are set to 10,20,30,..., 30
VAX: First 13 words are set
to 10,20,30,...,30 */

CLH(LOC Al(5)) - 10 ; /* BP: Al(4) is set to 10
MC68000: A1(5) is set to 10

VAX: Left half of A1(5)
is set to 10 */

CR.H(LOC A1(7)) - 10 ; /* BP: Al(7) is set to 10

MC68000: A1(8) is set to 10
VAX: Right half of A1(7)
is set to 10 */

CI(LOC Al(12)) - 10 ; /* BP,MC68000: Al(12) is set to 0,
A1(13) is set to 10
VAX: A1(12) is set to 10 */

CI(LOC.A1(15)) - 10 ; /* BP: A1(14) is set to 0,
A1(15) is set to 10
MC68000: A1(15) is set to 0,
A1(16) is set to 10
VAX: A1(15) is set to 10 */

CI(LOC B(0)) - 10,20,30 ; /* First 3 words
are set to 10,20,30 */

CI(LOC BI(O),0) = 10,20,30 ; /* First 3 words
are set to 10,20,30 */

CLH(LOC C(0)) - 10,20,30 ; /* Left half of first 3 words

is set to 10,20,30 */
CLH(LOC D(0),0) - 10,20,30 ; /* First 3 halfwords are set

to 10,20,30 */
CRH(LOC E(O)) - 10,20,30 ; /* Right half of first 3 words

is set to 10,20,30 */
CRH(LOC F(0),0) - 10,20,30 ; /* Starting with second half-

word, 3 halfwords are set
to 10,20,30 */

CD(LOC G(0)) - 10,20,30 ; /* First 3 doublewords are set
to 10,20 30 */

CD(LOC I(0),0) - 10,20,30 ; /* First 3 doublewords are set

to 10,20 30 */
Y1 - 10; /* Y1 is set to 10*/
CLH(LOC Y2) - 10 ; /* BP,VAX: left half of Y2

is set to 10
MC68000: Y2 is set to 10 */

CRH(LOC Y3) - 10 ; /* BP,VAX: right half of Y3 is
set to 10
MC68000: illegal, field outside
of specified data area (Y3) */

3-18

NSWC TR 84-101

CA(LOC K(0),0) - X'41',A'42',X'43'
/* 3 bytes (first, second, third)

in K(O) are set to character
code for A,B,C */

CA(LOC L(l),4) TO CA(LOC L(l), 9) - X'41',X'42',X'43'
/* 6 bytes (fifth, ..., tenth) are

set to character code for
A,B,C,C,C,C */

/* The meaning of "first", "second". ... for
indexed ALPHA components is machine-dependent.
See section on ALPHA components */
END; /* end of compound PRESET *1

3.7.3 Compile Time Expressions

A compile time expression is an expression for which a value can be
computed at compile time. A compile time expression is normally used on the
right side of preset statements. When used in executable statements, the
value is still computed at compile time and used -ut not recomputed at
runtime.

A compile time expression is:

A. A constant,

B. A previously preset variable,

C. LOC V where V is a format identifier or OWN variable,

D. An expression of the form:

OP1 e

or

el OP2 e2

where e, el, and e2 are compile time expressions;

and OP1 belongs to the set 1+, -, LOC, NOTBI;

OP2 belongs to the set I+, -M , /, HOD, ORB, XORB, ANDB).

For compile time expressions, the same type rules, including type
conversion, apply as for arbitrary expressions. These rules are specified in
the type tables, Appendix B. One exception is that expressions of the form
LOC Fl - LOC F2, where Fl, F2 are format identifiers, are not allowed.
Another exception is that real operands are not supported except for unary

3-19

NSWC TR 84-101

plus and unary minus.

3.7.4 Preset Expressions (SWA, LINKWORD, INITWORD)

A preset expression is an expression that can occur on the right side of
a preset statement.

A preset expression is a compile time expression or a functional
expression of the form f(el, ..., en) where f is a procedure identifier and
each ei, i-1, ..., n is a compile time expression or is LOC P, P being a
procedure identifier.

Three functional expressions are supported for preset expressions:

SWAN) (see Section 9.5)
LINKWORD(LOC P,N)
INITWORD(LOC P,N)

where N is a compile time integer expression and P is a procedure identifier
which must be GLOBAL or EXTERNAL.

The meaning of LINKWORD and INITWORD is machine-dependent:

VAX, MC68000:

The value of LINKWORD and INITWORD is an integer containing the
the address of the procedure P.

BP:

The value of LINKWORD(LOC P,N) is an integer representing a
linkage word which is used by the ENTER TASK instruction when
procedure P is invoked. LINKWORD(LOC P,N) should not be used as an
operand except for the assignment operator () in a preset.

PRESET X - LINKWORD(LOC P,N):

is compiled to:

LABX DATA,2 .LTO(P) N

where LABX is a label in the data area corresponding to X. After
being processed by the LINKER, this word contains:

3-20

NSWC TR 84-101

LTO LTA

where

LTO is the linkage table offset for P

and

LTA (- N) the virtual address of the linkage table.

It is recommended that the following synonyms for N be used:

SYNONYM LTA.M-X'D019' ; /* LTA FOR MONITOR */
SYNONYM LTA.E-X'D219' ; /* LTA FOR EXEC */
SYNONYM LTA.T-X'F019' ; /* LTA FOR TASK */

The value of INITWORD is an integer containing the information
for a dedicated interrupt cell. The procedure identifier P in the
first argument LOC P must be a GLOBAL or EXTERNAL EXEC procedure. N
represents the upper half of the Program Status Word (PSW) (Reference
5) when P is to be activated. INITWORD(LOC P,N) should only be used
as the right-hand side of a preset assignment statement.

3.8 SYNONYM DECLARATION

A synonym declaration defines a THLL item to be the name of a piece of
THLL text. When this name is used within the scope of the synonym declaration
then the corresponding THLL text is inserted. Several synonym definitions can
be combined into one compound synonym declaration.

A synonym declaration consists of the keyword SYNONYM followed by one
synonym element or followed by a sequence of synonym elements separated by
semicolons and enclosed in BEGIN-END brackets. The syntax for a synonym
element is as follows:

syn-left - syn-right

where syn-left is any THLL item other than a constant. Such a THLL item is
referred to as a non-const. The right side, syn-right, of a synonym element
has one of the following forms:

3-21

NSWC TR 84-101

constant
non-const THLL-text non-const

Here constant is any of the THLL constants described in Section 2.7.
THLL-text is an arbitrary piece of THLL text that does not contain the THLL
item non-const which starts and terminates the synonym right side. In the
first case, the right side is the constant; in the second case, it is the
THLL-text that is being named by the left side of the synonym.

It should be noted that a negative number such as -24 is not one THLL
item, it is a sequence of two THLL items.

By default, a synonym right side cannot exceed 1500 items. This iimit
can be increased by the SYN directive (see Appendix C).

The scope of a synonym declaration begins with the item following the
semicolon that terminates the synonym definition and ends at the end of the
block containing the definition or at the beginning of a new synonym
definition with the same left side, whichever comes first. The effect of a
synonym declaration within its scope is that every occurrence of the synonym
left side of a synonym element outside a synonym declaration is textually
replaced in the source text by the corresponding synonym right side. After
the replacement, scanning starts with the first item of the item sequence
replacing the identifier. Therefore, the right side of a synonym element can
contain another synonym left side which is also expanded to its corresponding
item sequence. The synonym must be declared before its first usage.

Examples:

A. Synonym declaration

SYNONYM PI - 3.141592

SYNONYM
BEGIN
MASKI - X'00000001'
MASK2 - X'0OOOFFFF'
MASK3 - X'FFFFOOOO'
END;

SYNONYM FUNC- S COS(PI*A) + SIN(PI*B) '

SYNONYM EXCHIK - $ BEGIN
INTEGER J
J I;
I K;
K J J ; /* EXCHANGE I AND K */
END $

3-22J -.

NSWC TR 84-101

SYNONYM RIGHTHALF - $ MASK2 ANDB $;
/* TO BE USED AS UNARY OPERATOR, E.G.

RIGHTHALF X "/

SYNONYM LEFTHALF - $ MASK3 ANDB $
/* TO BE USED AS UNARY OPERATOR */

B. Use of synonyms:

MASK1 expands to X'00000001'

EXCHIK expands to BEGIN
INTEGER J
J=I;
I K;
K = J ; /* EXCHANGE I AND K *1
END

RIGHTHALF X expands to X'000OFFFF' ANDB X

LEFTHALF X expands to X'FFFFOOOO' ANDB X

3.9 INSERT DECLARATION

The INSERT declaration permits the programmer to include source text from
other than the current compiler source. The source text to be included is
specified as a file from a directory in the following form:

INSERT f name (dnae)

where fname is a filename with the extension .THI and dname is a directory
name or a VAX logical name used to specify a directory. Appendix G describes
how the directory is located.

INSERT files normally contain a set of logically related declarations
that are to be included in many different compile units. This feature permits
the programmer to maintain z single copy of these declarations. In general,
however, an INSERT file may contain any piece of source text. The effect of
the INSERT declaration is that the character sequence "INSERT fname(dname)";
is replaced by the content of the INSERT file.

An INSERT declaration is not a declaration in the sense that it defines
the meaning of a symbol. It could more accurately be called a directive since
it instructs the compiler to read source text from a new file. Normally, an
INSERT declaration occurs in a declaration position and contains a sequence of
declarations. This is the reason for the misnomer "INSERT declaration."

3-23

NSWC TR 84-101

CHAPTER 4

EXPRESSIONS

An expression is a rule for computing a new value from existing values.
Expressions are built from constants and variables using operators, valued
procedures (functions), and control structures. Expressions are used in
constructing algorithms.

All operators that can be used in expressions are described in Section
2.5.1. They are predefined in the language. The user has no facility to
define operators. A set of standard procedures is predefined (Chapter 9). In
addition, THLL allows the user to define procedures (Chapter 6). Two control
structures are provided that can be used to form expressions: the if
construct for conditional expressions (Section 4.6) and the CASE construct for V
case expressions (Section 4.7).

Every expression has a type. The meanings of the six different types
provided by THLL are as follows:

HALF - an integer quantity of a machine-dependent size

BP: 16-bit quantity if the expression is a subscripted array
variable, 32-bit quantity otherwise;

MC68000: 16-bit quantity;

VAX: 32-bit quantity.

INTEGER - a 32-bit integer quantity

DOUBLE - a 64-bit integer quantity

REAL - a floating point quantity

POINTER - an address quantity

ALPHA - a character string quantity

It should be noted that the result of an operation involving subscripted
variables is not a subscripted variable. For example, if A is a HALF array,
then on the BP A(l) is a 16-bit quantity, but the value -A(l) is represented
as a 32-bit quantity.

4-1

t 7- V- ~------

NSWC TR 84-101

4.1 PRIMARY OPERANDS

Constants, that is, numbers, Boolean (logical) values, and strings as
defined in Section 2.7, and variables are basic elements. Basic elements can
serve as primary (lowest level) operands. Other constructs, even though they
are of a composite structure, can also be used as primary operands. These
constructs are:

Address expressions using LOC and LOCA,

Functional expressions,

Conditional expressions, and

Case expressions.

Any expression enclosed in parentheses becomes a primary operand. These kinds
of expressions listed above are discussed in the following sections.

4.2 VARIABLES

There are three kinds of variables: simple, subscripted, and component.
A variable names a value which may be changed through the use of an
assignment. Each variable has a type associated with it as indicated by the
data declaration (see Chapter 3). The possible types are: half (H), integer
(I), double (D), real (R), pointer (P), and ALPHA (A).

4.2.1 Simple Variables

A simple variable is represented by an identifier of type H, I, D, R, P,
or A.

4.2.2 Subscripted Variables

A subscripted variable is represented by an identifier followed by a
sequence of subscript expressions enclosed by parentheses. Subscripted
variables refer to elements of arrays of type H, I, D, R, P, or to elements of
stacks of type H, I, D, R, or P. A maximum of three subscript expressions is
allowed for array subscripted variables. Stack subscripted variables have
only one subscript expression.

4-2

NSWC TR 84-101

4.2.3 Component Variables

A coupon"nt variable is represented by a component identifier followed by
one or two expressions enclosed in parentheses. The first expression must be
of type P and specifies an origin relative to which the component is defined.
The second expression, if present, must be of type I and specifies an index.
Component variables may be of type I, D, R, or P.

4.2.4 Examples

Simple Subscripted Component

Al vG(3) SL(J+3)
AVERAGE W(I,7) ITEM (PART)
TR.29 REC(L, W, H) CAT(LX+4-X)

Additional information concerning variables can be found in the sections

on declarations.

4.3 FUNCTIONS

A functional expression (function call) in THLL is designated by an
identifier followed by parentheses enclosing a list of parameters. It has the
following form:

pid (parameter-list)

where pid is a procedure identifier and parameter-list is a sequence of actual
parameters separated by commas. A call to a function without parameters
consists only of the function name:

pid

An item in the parameter list can be an expression, an array identifier, a
stack identifier, a device identifier, ENTRYP of a procedure identifier, or a
format identifier.

A function call is the application of a procedure to a fixed set of
parameters resulting in a value. A function may have a type associated with
it as indicated in the procedure declaration. It must be of type H, I, D, R,
or P (see Section 6.2). An unvalued function is said to be of type N (no
type).

There is a set of predefined (standard) functions for which the user does
not have to supply a declaration. Details of these functions are described in
Chapter 9.

4-3

NSWC TR 84-101

4.4 SIMPLE EXPRESSIONS

Simple expressions are primary operands (Section 4.1) or are constructed
from them using the bit, arithmetic, relational, and logical operators
(Section 2.5.1). Expressions are evaluated according to the order of
precedence of the operators as given in Table 4-1, in general from left to
right. Sometimes optimization techniques require rearrangeue-t of
subexpressions. Therefore, the programmer can only assume that the order of
evaluation is compatible with the precedence table. No specific order of
evaluation can be guaranteed. This should not be viewed as any problem. The
only thing a user must keep in mind is to not write expressions whose value
depends on a particular order of evaluating subexpressions permitted by the
precedence rules.

TABLE 4-1. OPERATOR PRECEDENCE

Precedence Operator

0 (highest) LOC, LOCA
1 NOTB
2 ANDB

3 ORB, XORB
4 **
5 , MOD

6 unary-, unary+
7 +
8 LES, LEQ, EQL, GEQ, GRT, NEQ
9 NOT

10 AND
11 OR, XOR
12 (lowest)

Within the same precedence class, evaluation proceeds normally from left
to right. For example, A+B+C is the same as (A+B) + C. The only exception is
the assignment operator (-) where evaluation is right to left. For example,
X-Y-Z-A+B is the same as XC(Y-(Z-A+B)).

When the logical operators are used, it may not be necessary to evaluate
both operands. The programmer should avoid using expressions with side
effects, such as assignments and procedure calls, as operands. The evaluation
of the operators AND and OR is done as follows:

X AND Y : IF X EQL FALSE THEN X ELSE Y IFEND

X OR Y IF X EQL TRUE THEN X ELSE Y IFEND

4-4

* ~ ~ T k , *

NSWC TR 84-101

Every expression has a type which is determined from the operand types
and the value resulting from each operation. For example: let the expression
be A+B where A is of type I and B is of type R. The result of the addition
produces a value of type R. Appendix B contains the matrices which indicate
the types of values resulting from the various types of operands for each
operator.

Examples of expressions using logical or arithmetic operators:

Y GRT V OR Z LES Q
NOT (A OR B) AND C
-* (ALT MOD T)/z

MSL(I) XORB MSL(K)
PHI*TG/RS**2

4.5 ASSIGNMENT EXPRESSIONS

Assignment expressions are always of the form:

variable - expression

Since the right side expression can, in particular, be an assignment
expression, multiple assignments of the form:

varl - var2 - var3 - ... - vark - expression

are allowed in THLL. The left to right rule for evaluation does not apply to
assignment expressions. The rules for evaluating assignment expressions are
described below:

Examplas:

A. RT - SIN (B) * COFI

B. A(I+l, 2) -- 1

C. MN-ARK 7.5/SUM

D. LINE1 - #X MSL.NO.---STATUS X

4-5

NSWC TR 84-101

The following steps are applied in evaluating assignments.

1. If the variable on the left is subscripted, the subscript expressions
are evaluated. (Note Example B.)

2. If the variable on the left is a component one, the component
expression is evaluated.

3. The expression on the right is evaluated. This is the value of the
assignment expression.

4. The value from 3 is converted to the type of the left-hand variable.

5. Assignment of the converted value takes place.

In Example C, assume that M and ARK are real, N and SUM are integer and
that 3 is the value of SUM. The following table describes the sequence of
evaluations:

Expression Value Type

7.5/SUM 2.5 REAL
ARK = 7.5/SUM 2.5 REAL
ARK 2.5 REAL
N - ARK - 7.5/SUM 2.5 REAL
N 2 INTEGER
M - N - ARK 7.5/SUM 2.5 REAL
M 2.5 REAL

In the last assignment, the unconverted value of the right side is assigned to
the variable M.

When a component variable specifying a field of length K appears on the
left, only the K right-most bits of the value of the right-hand expression are
moved into the field.

The type conversions of step 4 are performed according to Table 4-2. The
row headings indicate the variable type and the column headings indicate the
expression type.

The assignment of a string to an ALPHA variable copies the string on the
right into the variable on the left which has been declared type A. An error
message indicates when the string is truncated if all of it does not fit into
the ALPHA variable on the left.

4-6

I .

NSWC TR 84-101

TABLE 4-2. TYPE CONVERSION

Left-Hand Right-Hand
- H I D R P A

H H H H H**

I I I I I**

D D D D D**

R R R R R * *

P * * • , p *

A * * * * * A

The assignment of a string to a double variable copies the first eight
characters from the string to the double variable. The string is considered
left-justified and blank-filled in the variable. Only an ALPHA string can be
used on the right of the assignment, not an ALPHA variable.

4.6 CONDITIONAL EXPRESSIONS

Conditional expressions have the form:

IF expl THEN
exp2

[EL"E
exp3]

ENDIF

where expl, exp2, and exp3 are expressions. The enclosing IF - ENDIF brackets
are required. The ELSE clause is optional.

There may be several paired expressions separated by THEN in a
conditional statement. In this case, the pairs are separated by the delimiter
ELSEIF.

4-7

NSWC TR 84-101

Consider:

IF P1 THEN
el

ELSEIF P2 THEN
e2

ELSEIF Pn THEN
en

[ELSE
ep]

ENDIF

To evaluate the conditional expression, each pl, pn is evaluated in turn
until one of the pi gives a value TRUE. Thus, not every pi is necessarily
evaluated. Then the corresponding ei is evaluated and becomes the value of
the conditional expression. If no pi is true, the conditional expression
evaluates to the value of the expression following the ELSE or to the default
value (as defined below) of the common type of el, ..., en. Because the pi
are interpreted as logical values, they cannot be of type R, P, or A. A zero
value for pi is FALSE; a nonzero value is TRUE.

The type of the conditional expression is the lowest inclusive common
type of the ei, which is defined below.

Let Ti, ... , Tn be the types of el, ... , en. Let PAIR be a type function
defined by Table 4-3. Then the type of el, ..., en is

rTi if n - 1
TYPE (Ti, Tn) T

PAIR (TYPE(T1, ... , Tn-1), Tn)
otherwise.

4-8

NSWC TR 84-101

TABLE 4-3. TYPE OF A SET OF EXPRESSIONS

expression ei

PAIR H I D R P A N

H H I D R N N N

I I I D R N N N

D D D D R N N N

expression ej R R R R R N N N

P N N N N P N N

A N N N N N A N

N N N N N N N N

The following table defines for each type a default value:

Default Value

H 0 of type H

I 0 of type I

D 0 of type D

R 0.0 of type R

P 0 of type P

A #// (null string)

4-9

* I -

NSWC TR 84-101

4.7 CASE EXPRESSIONS

The general form for a case expression is:

CASE p DO
el

NEXTCASE
e2

NEXTCASE
en

ENDCASE

The expression p is evaluated to an integer (if p is real, it is converted)
which serves as an index to select which expression ei is done. If p produces
a value less than 1 or greater than n, then p is assigned the value of n. The
programmer must keep this in mind if the limits of p are not known or if an
out of bounds value is to be processed as an error.

The type of the case expression is the lowest inclusive common type of
the ei expressions as defined in Section 4.6.

4-10

L

NSWC TR 84-101

CHAPTER 5

STATEMENTS

The primary tools for coding algorithms are expressions and statements.
The difference between them is that expressions have values while
statements produce only effects on the environment. Since statements have no
value, they are assigned the type N for no type.

Statements can be divided into two categories:

A. Proper statements and

B. Change of control statements.

These categories are subdivided in the sections below.

5.1 LABELED STATEMENTS

A labeled statement is a statement or expression preceded by an
identifier and a colon.

id: statement/expression

More generally, a sequence of identifiers can be used, each one followed by a
colon.

idl: id2: ... idk: statement/expression

Each one of these identifiers can serve to identify this statement. This
facility is needed for GOTO, EXIT, and LOOPEXIT statements. It is not true
that a labeled statement can occur wherever a statement can occur. The
statement representing the body of a loop or the alternative in a conditional
statement or in a case statement must not be a labeled statement.

5-1

r g I,

NSWC TR 84-101

5.2 PROPER STATEMENTS

A proper statement is a block or one of the following statements:
compound, conditional, case, loop, or null.

5.2.1 Blocks and Compound Statements

A block may be defined as a sequence of zero or more declarations
followed by one or more statements or expressions, all separated by semicolons
(;), and embraced by BEGIN-END brackets. The structure of a block can be
indicated by indentation and alignment of the brackets as shown below:

BEGIN
dl ;

dn;
el

em
END

where the dl to dn are declarations, and the el to em are expressions or
statements.

Blocks may be nested, and this can be indicated by further levels of
indentation (see the examples in Chapter 10).

A compound statement is a block which contains no declarations.

Each block introduces a new level of nomenclature. All identifiers with
the exception of labels are defined through declarations at the beginning of
the block. These identifiers are local to the block in which they are
defined. Hence, the entity represented by the identifier inside the block
does not exist outside the block; and any entity represented by the same
identifier outside the block cannot be accessed from within the block.

Any identifier referenced in a block, but not declared there, is said to
be nonlocal to that block. This type of identifier represents the same entity
in the block and all embracing blocks up to the one in which it is defined.

An expression is said to be in a statement position if it follows BEGIN
or a semicolon or a colon.

5-2

NSWC TR 84-101

5.2.2 Conditional Statement

The conditional expression:

IF pl THEN
el

ELSEIF p2 THEN
e2

ELSEIF pj THEN
ej

ELSE
ek

ENDIF

becomes a conditional statement if the set of el, e2, ek, which can be
statements or expressions has type N. The type of the set is determined as
described in Section 4.6. If at least one of the ei is a statement, the
conditional expression becomes a statement. Each ei must be unlabeled.

5.2.3 Case Statement

The case expression:

CASE e DO
el

NEXTCASE
e2

NEXTCASE

ekNXCASE

becomes a case statement if the type of the set of el ... , ek, which can be
statements or expressions, is type N. The type of the set el, ..., ek is
determined as described in Section 4.6. Each ei must be unlabeled.

Sections 4.6 and 4.7 discuss conditional and case expressions. Examples
can be found in Chapter 10.

5-3

NSWC TR 84-101

5.2.4 Loop Statements

There are four types of loop statements. Each type uses the reserved
word DO followed by an expression or a proper statement s terminated by the
keyword ENDOO. a is called the loop body and is evaluated zero or more times
according to conditions. The loop body must not be labeled.

In all forms to be described, e must be of type H, I, or D since it is
interpreted as true or false. The expressions el, e2, and e3 may be of any
type. The only restrictions are those resulting from the use of the type of
conversion rules for -, +, -, and SIGN.

In Forms 2-4, v must be a simple variable. Examples for each type are
given.

Form 1:

WHILE e DO

ENDDO

For this form, * is evaluated. If a true (nonzero) value results, s is
evaluated and control returns to evaluate e again. Otherwise, the loop is
complete.

Example 1:

I1 - 0
WHILE Il LES 10 DO

Ii - Ii + 1
ENDDO

When this statement completes, the value of I1 is 10.

Form 2:

FOR v - el STEP e2 WHILE e DO

s

ENDDO

The expressions el and e2 are evaluated and v is assigned the value of
.1. Next e is evaluated. If a true (nonzero) value results, s is evaluated
and v is incremented by the value of e2. Control returns to the point of
evaluating again. Otherwise, the loop is complete.

5-4

~. ~L. I -.

NSWC TR 84-101

Example 2:

I - 20
FOR C - 0 STEP 1 WHILE I GRT 12 DO

I-I-i
ENDDO

Upon completion of this loop, I is 12 and C is 8.

Form 3:

FOR v - el STEP e2 UNTIL e3 DO
s

ENDDO

This statement is equivalent to a variation of Form 2.

v3- e3 ;
FOR v - el STEP e2 WHILE (v-v3)*SIGN(e2) LEQ 0 DO

s

ENDDO

Example 3:

C-O;
FOR I 0 STEP 1 UNTIL 10 DO

ENDDO

At the end of the loop, both I and C have the value 11.

Form 4:

FOR v -el REPEAT e2 WHILE e DO

ENDDO

The expression el is evaluated and the resulting value assigned to v.
Next e is evaluated. If e returns a true (nonzero) value, s is evaluated and
e2 evaluated. The value of e2 becomes the new value for v and control returns
to the point of evaluating e. If e is false (zero), the loop is complete.
Note that in this form v is never incremented as in Forms 2 and 3; instead it
is assigned the value of e2 each time through the loop.

5-5

NSWC TR 84-101

Example 4:

C - 14
FOR I 1 1 REPEAT 1*2 WHILE C GRT 10 DO

C =C - I

ENDDO

When this loop completes, I has the value 16 and C has the value 10.

5.2.5 Null Statement

The null statement is represented by the reserved word NULL and specifies
a no operation. It could be used to fall to the end of a conditional or case
statement or at any point where a no operation is appropriate.

5.3 CHANGE OF CONTROL STATEMENTS

There are three kinds of change of control statements: (1)
GOTO statements, (2) EXIT statements, and (3) RETURN statements. Each are
discussed in turn.

5.3.1 GOTO Statement

GOTO statements have the following form:

GOTO(label identifier

switch identifier (subscript)

The obvious effect is that control is diverted to the statement identified by
the specified label or switch.

It should be noted that both forms of the GOTO statement are, in general,
considered unacceptable in structured programfing. The second form can be
useful for selected case statements as explained in Reference 4.

5.3.2 EXIT Statement

An EXIT statement has one of the following forms:

5-6

NSWC TR 84-101

EXIT [label identifier]

LOOPEXIT [label identifier]

The effect is to transfer control to:

A. The end of the present block (EXIT),

B. The end of an embracing block labeled by the label identifier (EXIT
label),

C. The end of the present loop (LOOPEXIT), and

D. The end of an embracing loop labeled by the label identifier
(LOOPEXIT label).

Control is not transferred to the statement on which the label appears.

EXIT is used to terminate execution of a block of code. If the labeled
EXIT form is used, the label must appear on the BEGIN of the block to be
terminated.

Example A: Unlabeled EXIT.

BEGIN
S - SIN(PHIO)
ERR - 0
C - COS(PHIO)

BEGIN
X-R*S
IF X THEN

EXIT
ENDIF ;
ERR- 5
END;

Y - 1.0 + CFl * X + CF2 * X**2
END;

Here the inner block is the one which terminates if X is nonzero and ERR
remains set to zero.

5-7

S.- - - -

NSWC TR 84-101

Example B: Labeled EXIT.

Li: BEGIN
S = SIN(PHIO)
C - COS(PHIO)

BEGIN
X-R*S
IF X - 0.0 THEN

EXIT Li
ENDIF
END;

Y - 1.0 + CF1 * X + CF2 * X**2
END;

In this example, the outer block labeled Li is terminated if X is zero.
In this case, Y is not evaluated.

If EXIT is used within a block which is the body of a loop statement,
then this block is exited and the next iteration of the loop is executed (if
any). Care must be exercised in placing the label if one is used since the
loop body cannot be labeled. In this case, the loop body should be made an
unlabeled block containing one labeled statement:

Example C: Labeled EXIT within a Loop.

FOR K - 0 STEP 1 UNTIL 23 DO
BEGIN
Li: BEGIN

E - SIN(AL(K)) * COS(DL(K))
IF E LEQ MIN THEN

EXIT Li
ENDIF ;
F - K2 / E
END;

END
ENDDO

In Example C, the body of the loop statement is executed 24 times. However, F
may not be evaluated on each iteration. The evaluation of F takes place on
those iterations where E exceeds the value of MIN. In this example, the label
could be removed and the result would be unchanged. But suppose the simple IF
statement were replaced by this compound IF statement.

5-8

NSWC TR 84-101

FOR K - 0 STEP 1 UNTIL 23 DO
BEGIN
Li: BEGIN

IF E LEQ MIN THEN
BEGIN
ERR - 1
EXIT
END

ENDIF ;
F - K2 / E
END

END
ENDDO z

Omitting the label in this modified example would permit the evaluation of F
on every iteration because the unlabeled EXIT would terminate the block in the
THEN clause of the IF statement.

LOOPEXIT causes termination of iteration within the loop. If the labeled
form is used, the label identifier must appear at the beginning of the loop
statement.

Example D: Unlabeled LOOPEXIT.

FOR K - 0 STEP 1 UNTIL 23 DO
IF A(K) EQL ACTIVE THEN

BEGIN
P - PX(K)

AL - ALP(K)
D - DE(K)
LOOPEXIT
END

ELSE
P - 0.0

ENDIF
ENDDO

In this example, iteration terminates if a value for A(K) equals the value of
ACTIVE.

5-9

tL

NSWC TR 84-101

Example E: Labeled LOOPEXIT.

L: FOR J - 1 STEP 1 UNTIL K DO
BEGIN
K N-M;
FOR I J STEP-M UNTIL 1 DO

IF INP(I+M) GEQ INP(I) THEN
LOOPEXIT L

ELSE
INP(I+M) - W

ENDIF
ENDDO;
m-m/2 ;
END

ENDDO

Here, the outer loop is terminated if conditions in the inner loop are met.

5.3.3 RETURN Statement

The form of a RETURN statement is:

RETURN (expression]

The effect of RETURN is to terminate the evaluation of a procedure body

and transfer control to the point of call. A procedure body may contain more
than one RETURN statement.

RETURN without an expression is used in procedures of type N or no type
where no value is produced.

RETURN followed by a single expression is used with procedures of type H,
I, D, R, and P. The possible types of the return expression are specified in
Table 5-1. It is converted to the procedure type if recessary. See Section

6.5 for an example.

5-10
"I

.jt

NSWC TR 84-101

TABLE 5-1. RETURN EXPRESSION TYPE

Procedure Type Return Expression Type

H H, I, D, R

I H, I, D, R

D H, I, D, R

R H, I, D, R

P P

5.4 COMPILE UNITS

A compile unit is a non-empty sequence of declarations enclosed by BEGIN

... END FINIS brackets. The declarations are either data declarations or
procedure declarations.

In general, a compile unit has the following structure:

CUNAME
BEGIN
dl
d2;

dn;
END FINIS

In the structure illustrated, CUNAME represents the compile unit name.

This name is used by the compiler and by other THLL support tools to identify
this compile unit and is therefore mandatory. The compile unit name is an
identifier that should not contain any special character as one of the first
eight characters. It is not followed by a semicolon.

The di represent declarations.

5-11

A-

NSWC TR 84-101

CHAPTER 6

PROCEDURE DECLARATIONS

A procedure declaration defines an identifier to be the name of a
procedure. A procedure specifies code that can be executed from many places
in a program by "invoking" or "calling" the procedure. A procedure call has
the form:

P(al, ..., ak)

where P is the procedure name and al, ..., ak are the actual parameters. If
the procedure has a value, then the call can be used in an expression
position, otherwise the call must be used in a statement position.

The main part of a procedure is the procedure body which is a block that
specifies the piece of code to be executed when the procedure is invoked. The
procedure body is preceded by the procedure head which contains the following
information:

A. Access of the procedure,

B. Type of the value of the procedure,

C. Name of the procedure,

D. List of formal parameters, and

E. Description of formal parameters.

The information expressed in items A, B, D, and E can be omitted. If
omitted, certain defaults are assumed as explained below.

General format of a procedure declaration:

DEFINE
access type PROCEDURE procedure-name /* head */
foral-parameter-list ;
formal-parameter-description

BEGIN /* body */

END

6-1

I0

NSWC TR 84-101

6.1 ACCESS PART

The access part describes how the procedure is used. It has significance
only for the BP. It is needed here because of the architecture of the machine
(case A below) and because the Monitor-Exec interface violates the THLL
procedure interface conventions (cases C and D). There are four possible
access specifications:

A. LINK

B. < empty > . This is the default if no access part is explicitly
specified. For this case, it is assumed that the call and the
procedure definitions are in the same virtual space.

C. EXEC

D. EXEC INTERRUPT n

LINK allows the call to the procedure and the procedure definition to be
in different virtual spaces. Link procedures are not allowed to have entry
points to procedures as arguments.

EXEC specifies that the procedure is treated by the Monitor as a Monitor
called Exec Utility such as MODE INIT, EES, LINKED INTERRUPT, KEYBOARD
PROCESSOR, etc. EXEC procedure declarations can appear only in privileged
programs (see PRIV directive, Appendix C). An EXEC procedure saves the values
of all registers on the Monitor's DATA.STACK on entry and restores the
registers on exit from the procedure. An EXEC procedure cannot have arguments
or a value. The entry point of an EXEC procedure cannot be passed to any
procedure as a parameter.

EXEC INTERRUPT n means that the procedure is used as an interrupt
procedure for level n. Therefore, n must be an integer in the range 0 < n <
47. EXEC INTERRUPT n procedure declarations can appear only in privileged
programs (see PRIV directive, Appendix C). An EXEC INTERRUPT n procedure
first saves registers 0 and 1 on the Monitor's DATA.STACK, updates the Monitor
CEIR with the currently executing interrupt routine, modifies the linkage
registers to point to the executive, then turns the Monitor interrupt flag on
and saves the rest of the registers and the old Monitor CEIR on DATA.STACK.
The rest of the entry sequence is then the same as for the EXEC case after the
registers have been saved. The exit sequence restores the original
environment that existed when the interrupt procedure was entered. An
interrupt procedure cannot have arguments or a value. The entry point of an
EXEC INTERRUPT procedure cannot be passed to any procedure as a parameter.

6-2

NSWC TR 84-101

6.2 TYPED PROCEDURES

Link procedures and regular procedures may or may not yield a value. If
a value is defined, then the type of the value must precede the keyword
PROCEDURE, otherwise no type specification precedes PROCEDURE. EXEC and EXEC
INTERRUPT procedures cannot be valued. The possible types of a procedure are:
HALF, INTEGER, DOUBLE, REAL, or POINTER.

The identifier following PROCEDURE is the name of the procedure. The
procedure declaration binds this name to the procedure body.

6.3 FORMAL PARAMETERS

A procedure can have n arguments, n > 0. These arguments can be
referenced within the body symbolically by names. The special case of
optional arguments are treated in Section 6.7. The names of all arguments are
listed in the procedure head after the procedure name in the form of a list of
identifiers separated by commas and enclosed in parentheses.

Example:

DEFINE PROCEDURE P(Xl,X2,X3,X4)

This means that Xl is the name for the first argument of P, X2 the name for
the second argument, etc. These argument names are called the formal
parameters of the procedure.

When a procedure is invoked, the formal parameters are bound to the
corresponding actual parameters. For each formal parameter, the binding
mechanism and the type of the object this formal parameter is bound to must be
specified. This is done in the description of the formal parameters. It
follows the semicolon after the formal parameter list.

6.4 DESCRIPTION OF FORMAL PARAMETERS

The formal-parameters-description has two parts. They are:

A. Value part and

B. Specification part.

Each is described separately.

6-3

I , ,

NSWC TR 84-101

6.4.1 Value Part

This part describes the transmission mode of the actual parameters. THLL
provides two binding mechanisms, also called argument transmission modes:

A. By value and

B. By reference.

If the formal parameter X is a value parameter, then it is treated as if
it were a symbol declared in a fictitious block embracing the procedure body.
That means X is local to the procedure and assignments made to X within the
procedure have no effect outside of it. An actual parameter passed by value
is unchanged after return from a procedure call.

If the formal parameter X is a reference parameter, then it is treated
within the body of the procedure as if for every occurrence of X the actual
parameter was substituted. That means that assignments made to X within the
procedure have a permanent effect outside of it.

The value part appears immediately after the formal parameter list in the
head of a procedure and is separated from it by a semicolon. All those
parameters which are passed by value must be listed in the value part. It is
of the form:

VALUE idl, id2, ..., idk ;

Each of the identifiers listed in the value part must be a formal parameter.
Formal parameters not listed in the value part are, by default, reference
parameters.

Rules for argument transmission:

A. Simple and subscripted variables of type H, I, D, R, P, and component
variables representing full words may be passed by value or
reference. Exception: on the BP, a subscripted array variable of
type H can only be passed by value.

B. Array, stack, format, and device identifiers, simple variables and
constants of type ALPHA and procedure entry points can be passed by
reference only.

C. Constants (not of type ALPHA), component variables representing
partial words or doublewords, and all expressions which are not
variables can be passed by value only.

If no formal parameters are passed by value, then the value part,
including the semicolon following it, is omitted in the procedure head.

6-4

NSWC TR 84-101

6.4.2 Specification Part

The second part in the "description of the formal parameters" is the
specification part. Every formal parameter must appear in the specification
part. Those parameters which are to be transmitted by value appear in the
value part and the specification part. If the procedure has no formal
parameters, then the specification part, including the semicolon following it,
is omitted.

In general, a formal parameter always represents a symbol of the
following kind:

A. Simple variable,

B. Device,

C. Format,

D. Stack,

E. Array, or

F. Procedure.

For the most part, the specification of the formal parameters is quite simple.
Only if the formal parameter represents a procedure can it become more
complex.

The specification part follows the value part (if there is one) or the
procedure head (if there is no value part).

The various kinds of parameters that can appear in the specification part
are now discussed in detail.

6.4.2.1 Simple Variable, Device, or Format Specification - The form for
specifying a formal parameter which is a simple variable is:

type id

where type is one of the keywords HALF, INTEGER, DOUBLE, REAL, POINTER, or
ALPHA. Additional identifiers of the same type may appear if separated by
colmas.

The form for specifying a formal parameter which is a device or a format K
is:

DEVICE id ; /* device specification */
FORMAT id ; /* format specification */

Additional identifiers of the same kind may appear if separated by commas.

6-5i t2

NSWC TR 84-101

Example:

INTEGER FLAG,I,J
REAL X,Y,Z
DEVICE DISK
ALPHA MESS1
FORMAT F1i,,FM2

Note that the size of the ALPHA variable is not given. An ALPHA variable is
always passed by reference. When an ALPHA variable is used within a
procedure, the size of the corresponding actual parameter is used.

6.4.2.2 Stack Specification - The form for specifying a formal parameter

which is a stack is:

stack-type STACK id

where stack-type is one of the keywords HALF, INTEGER, DOUBLE, REAL, or
POINTER. Additional stack identifiers of the same type may appear if

separated by commas.

Example:

DOUBLE STACK A,B ;
POINTER STACK C

Note that the size of the stack is not given. This information is included in
the stack header which is part of the stack data structure.

6.4.2.3 Array Specification - The form for specifying an array as a formal

parameter is:

array-type ARRAY idl(sizel), ... , id(size) ;

where array-type is one of the keywords HALF, INTEGER, DOUBLE, REAL, or
POINTER; and idl, ..., id are identifiers specified as arrays. Each
identifier is followed by a size specification in the form of one or two or
three integer numbers, separated by commas and enclosed in parentheses or in
the form of one or two or three stars.

If the size is of the form:

nl, n2, n3

6-6

ri .-- '

NSWC TR 84-101

then

0 ... nl is the range of the first subscript,
0 ... n2 is the range of the second subscript, and
0 ... n3 is the range of the third subscript.

If the size of each dimension is specified by stars, then the array
formal parameter has no specific size. For each invocation of the procedure,
the size of the corresponding actual parameter becomes the size of the formal
parameter. The size information is included in the header of the actual
parameter. More efficient object code is produced if the ranges are specified
by numbers.

If in an array specification a set of consecutively listed array names
has the same number of dimensions and for each dimension the same range, then
only the first array name in this collection needs a size specification. For
the remaining names, the same size is assumed by default until a new size is
specified.

Example:

INTEGER ARRAY DATA(*,*,*)
REAL ARRAY ALPH(15),DELTA,GAMHA
POINTER ARRAY PICK(7)

Note that the asterisks indicate that the integer array DATA has three
subscripts. The real arrays ALPH, DELTA, and GAMMA all have 16 elements.

6.4.2.4 Procedure Specification - The form for specifying a formal parameter

which is a procedure is:

proc-type PROCEDURE id

or

proc-type PROCEDURE id (arg-list)

where proc-type is one of the keywords HALF, INTEGER, DOUBLE, REAL, or POINTER
if the procedure is typed, or it may be <empty> if the procedure is untyped.
The first form is used for procedures without parameters, the second for
procedures with parameters.

If the formal parameter procedure has parameters, arg-list must describe
them in the order of occurrence in the procedure definition. This description
contains for each parameter the information equivalent to the value part and
the specification part in the procedure definition.

6-7

NSWC TR 84-101

The syntax for arg-list is as follows:

arg-list is a sequence of specification elements, separated by comas.
Each specification element corresponds to a formal parameter in the
order of the occurrence in the procedure definition. A specification
element can have one of the following forms:

type /* simple variable by reference */
VALUE type /* simple variable by value *1
type VALUE /* simple variable by value */
type STACK /* stack */
FORMAT /* format */
ALPHA /* ALPHA variable +/
DEVICE /* device */
type ARRAY (size) /* array */
type PROCEDURE (arg-list) /* valued procedure */
PROCEDURE (arg-list) /* unvalued procedure */
type PROCEDURE /* valued procedure without parameters */
PROCEDURE /* unvalued procedure without parameters */

where type is one of the keywords HALF, INTEGER, DOUBLE, REAL, or POINTER, and
size has the same meaning as in the array specification. Thus, size consists
of one or two or three integer numbers, or of one or two or three asterisks.
The last two lines describe the cases where the procedure being passed as a
parameter has a parameter which is itself a procedure.

The following examples illustrate specification elements, that can occur

in a specification part, describing procedure formal parameters.

Examples:

REAL PROCEDURE CHECK ; /* 1 */

PROCEDURE STALL ; /* 2 */

INTEGER PROCEDURE COUNT(POINTER VALUE,REAL ARRAY(9),INTEGER STACK,
INTEGER VALUE) ; /* 3 */

PROCEDURE ZIP(REAL,REAL PROCEDURE(INTEGER,VALUE POINTER) ,DOUBLE)
/* 4*

Example 1 illustrates a typed procedure without parameters.

Example 2 describes an untyped procedure without parameters.

Example 3 describes a procedure of type INTEGER which has four formal
parameters. Two of these parameters are to be passed by value. Since arrays
and stacks must be passed by reference, only their attributes are given. A
size is required for the array, but not for the stack.

6-8

79 . .

NSWC TR 84-101

Example 4 describes an untyped procedure ZIP which requires a procedure
as the second parameter. Therefore, the argument list for that procedure
parameter must be given. This list in turn consists of two parameters, the
first one being an integer variable by reference, the second one a pointer
variable by value.

6.5 PROCEDURE READ EXAMPLE

This example combines all parts of the procedure head. The comments
within the example indicate the uses of the various parameters. Since the
procedure PI is of type integer, note that the return statement contains a
call to the integer procedure Z. This shows the use of the correct RETURN
statement form (see Section 5.3.3).

The call to procedure PI could appear in a statement, but it must have
three actual parameters. Such a call might be:

IF PI(5-X,RKATRIX,ENTRYP IPROC) THEN
V - SIN ()

ELSE V - -SIN(M)

ENDIF ;

This assumes that declarations have been made for X, RIATRIX, IPROC, V, and M.
Such as:

INTEGER X
REAL ARRAY RMATRIX(3,7)
EXTERNAL INTEGER PROCEDURE IPROC (REAL,POINTER)
REAL V,M

Example:

DEFINE INTEGER PROCEDURE PI(I,Y,Z)

VALUE I ; /* value part */

/* specification part follows: */
INTEGER I ; /* INDEX FOR GLOBAL ARRAY WTABLE */
REAL ARRAY Y(*,*) ; /* PRECEDENCE MATRIX */
INTEGER PROCEDURE Z(REAL,POINTER) ;

/* THE VALUE OF Z WILL BE RETURNED AS
THE VALUE OF PI. THE FIRST ARGUMENT
OF Z IS AN ELEMENT OF Y, THE SECOND
ARGUMENT IS A GLOBAL POINTER
VARIABLE Q */

/* end of specification part */

6-9

I,

NSWC TR 84-101

BEGIN

RETURN Z(Y(1,2),Q)
END

Thus, the specification part gives, for each formal parameter,
information about the type and the kind of entity it represents. If the
formal parameter represents an array, then each dimension may be specified by
a number or by an asterisk, in which case no fixed ranges for the subscripts
are assumed. If the formal parameter represents a procedure, then its type
must be specified as well as each argument that the procedure takes. Since
any of those arguments can again be a procedure entry point, it is clear that
the specification part for a formal parameter representing a procedure can
have a nested structure to any depth. Therefore, the definition of the
construct arg-list given above is recursive; it contains the construct
arg-list on the right side of the definition.

It is good programming practice to use a standard format for procedure
declarations similar to the one in the example above. In particular, for each
formal parameter a brief explanation should be given telling what it means or
how it is used.

It is possible for a procedure to have no arguments. In that case, the
formal parameter list and the description of the formal parameters are
omitted. That means that the procedure body follows directly after the
procedure name, separated from it by a semicolon.

6.6 GENERAL PROPERTIES OF PROCEDURES

Formal parameters are not permitted in interrupt procedures. Upon entry,
the Interrupt procedure saves all the active general registers on an executive
stack, and then uses the runtime stack like any other THLL procedure.

All procedures can be called in a recursive manner. A procedure may call
itself or it can call a procedure which eventually causes it to be called.
Upon each entry, the procedure saves the present environment on a stack.
Actual parameters, temporary storage, and shared variables are allocated for
each invocation of a recursive procedure. Therefore, the contents of actual
parameters, temporary storage and shared variables will not be destroyed by
another invocation of the procedure. However, OWN data will be destroyed.

The following description is unique for the BP:

Data from all virtual spaces are available to procedures in each
virtual space. Executable instructions in "brother" nodes are
overlaid in virtual space. A procedure in a "brother" virtual space
must be invoked via the link instruction (see external declaration);

6-10

NSWC TR 84-101

but, since the data are not included in the virtual overlay, the data
are available to the "brother" virtual space. The Binder must process
procedures of this type to assure that the data are moved to a common
virtual space (Reference 6).

When a procedure is called, some preparation is made by the calling
procedure. Automatic type conversion of the actual parameter to the type of
the corresponding formal parameter is performed for parameters that are passed
by value. An error message is emitted when the types do not agree for
parameteri passed by reference, and no type conversion is performed.

The following table shows the legal type conversions from actual
parameter type to formal parameter type for the corresponding argument that is
passed by value.

actual parameters

H I D R P A

H H H H H**

I I 11 I * *

formal D D D D D * *

parameters R R R R R * *

p * . * . p *

A * * * * AA

This type table is almost identical to the type table used for the assignment
operator (-). If a formal parameter is of type A, then an actual parameter of
type P is assumed to point to an ALPHA variable. If the formal parameter is
of type P, then the corresponding actual parameter may be the integer 0. If
the formal parameter is of type D, then the corresponding actual parameter may
be a string constant. Only the first eight characters of the string constant
are moved to the double. The string is considered left-justified and
blank-filled.

If the formal parameter is a format, then the actual parameter can be
format, pointer or integer constant zero. The pointer is assumed to point
directly to a format. The integer constant zero means that no format is being
used.

If the number of actual parameters is less than the number of formal
parameters, TRICOMP adds the following actual parameters for the missing
arguments.

6-11

NSWC TR 84-101

A. 0 of the appropriate type for a formal parameter passed by value.

B. ENTRYP of the called procedure for a parameter passed by reference.

On the BP and VAX, a runtime interrupt occurs if the procedure tries to
reference a nonexistent parameter passed by reference.

6.7 OPTIONAL ARGUMENTS

A procedure P with n > 0 formal parameters may have optional arguments.
This is indicated in the-procedure declaration by writing the keyword OPTARG
after the last formal parameter, e.g.,

DEFINE INTEGER PROCEDURE P(Xl, ... , Xn, OPTARG)

or

DEFINE INTEGER PROCEDURE Q(OPTARG)

and similarly for external procedure declarations.

This means that in addition to the first n > 0 parameters which can be
referenced within the body of P directly by name, any remaining actual
parameters an+l, ..., am of a call:

P(al, ... , an, an+l, ... , am)

can be referenced within the body of P indirectly using the special standard
functions described below.

A. ARGCNT - is an integer procedure with no arguments. Its value is the
number of actual parameters of the current procedure.

B. ARGPTR(I) - is a pointer procedure of one argument; I > 0 is an
integer. The value of ARGPTR(I) is a pointer to the I'th actual parameter or
to a memory word containing the value of the actual parameter. The value of
ARGPTR(I) is a pointer to a copy of the actual parameter for the following
.cases:

Partial word component variable,
subscripted array variable of type half (for BP only),
entry point of a procedure,
expression that is not a variable.

C. ARGTYPE(I) - is an integer procedure of one argument; I > C is an
integer. The value of ARGTYPE is an integer representing the type of the I'th
argument of the current procedure. The possible values are tabled below:

6-12

'IL

NSWC TR 84-101

Argument Type Value Returned

N (no type) 0
N 1
I 2
D 3
R 4
P 5
A 6

D. ARGSYNCL(I) - is an integer procedure of one argument; I > 0 is an
integer. The value of ARGSYNCL is an integer representing the "syntactic
class" of the I'th argument as follows. The meaning of the value of ARGSYNCL
is machine-dependent:

Argument Class Value Returned
BP VAX,MC68000

one-dimensional array 1 1
two-dimensional array 2 2
three-dimensional array 3 3
simple variable 0 4
stack 4 5
procedure 0 6
device 0 7
format 0 8

Optional arguments are useful for defining procedures with a variable
number of arguments. Thus, the user can do what is presently being done on
the system level for built-in procedures like READ or WRITE.

If the procedure P has n formal parameters and P is not declared as a
procedure with optional arguments, then in a call to P, all actual parameters

are evaluated, but only the first n parameters are bound to their
corresponding formal parameters. A call to ARGCNT within P would yield the
value n.

On the VAX and on the MC68000, calls to ARGTYPE and ARGSYNCL should only
be used in a procedure declared with optional arguments. The external
declaration for a procedure with optional arguments must specfify OPTARG.

6.8 RETURNING A VALUE OF A PROCEDURE

As mentioned above, a procedure may be typed or untyped. A typed
procedure returns a value which has the type as specified in the head. The
possible types are: H, I, D, R, and P. An untyped procedure does not return
a value. It is executed for its effect on its environment only. Typed

6-13

NSWC Th 84-101

procedures are called functions. For convenience, the improper type N (no
type) is assigned to an untyped procedure, which is also called a function.
Interrupt and executive procedures must be of type N.

Return from a procedure is made via a return statement. There are two

kinds of return statements:

A. Unvalued return statement: RETURN

B. Valued return statement: RETURN < return expression >

Any number of return statements can appear within a procedure body. If
the procedure is untyped, then only unvalued returns should occur. If the
procedure is typed, then only valued returns should appear. All return
expressions should have types compatible with the type of the procedure
according to the type rules for the assignment operator ().

Procedure Type Type of Return Expression

H HI DR
I HI DR
D HI DR
R H I D R
P P

At the end of a procedure, a default RETURN is implied:

RETURN, for an untyped procedure
RETURN EO, for a typed procedure

Procedure Type EO

H 0
I 0
D 0
R 0.0
P 0

6-14

NSWC TR 84-101

CHAPTER 7

GLOBAL, EXTERNAL, AND COMMON DECLARATIONS

7.1 GLOBAL AND EXTERNAL DECLARATIONS

For program development, it is advantageous to write and check out small
compile units. Integration into larger units can be done by combining the
components into a new THLL program and compiling it or by "binding" the
precompiled units together (Reference 6). The latter approach does not
require recompilation and allows the formation of virtual and physical overlay
structures. Therefore, the binding approach is recommended for program
integration.

How do compile units communicate with each other? THLL provides a
mechanism for equivalencing names in separately compiled units. This is done
by GLOBAL and EXTERNAL declarations.

The GLOBAL declaration makes an identifier, defined in one compile unit,
known to a separate compile unit. An EXTERNAL declaration defines an
identifier to represent an entity which is defined under the same name in
another separate compile unit.

7.1.1 Global Declaration

A GLOBAL declaration consists of the keyword GLOBAL followed by a
sequence of identifiers separated by commas. The effect is that each
identifier in the list is made available to the Linking Loader to satisfy
external names in other compile units. These identifiers must be properly
declared within the same block of the compilation in which they are declared
GLOBAL. Components, devices, labels, and switches cannot be declared GLOBAL.

Example:

GLOBAL A,SQUARE,SCAN,COMPARE

Note that no attributes are given in the GLOBAL declaration. From the
declaration alone, a reader cannot separate array, procedure, simple
variables, etc. from one another.

Global procedures must be declared in the outermost block of a compile
unit.

7-1

Id1 , !- -. -

NSWC TR 84-101

7.1.2 External Declaration

An EXTERNAL declaration does not define an identifier, it just
equivalences it to an identifier defined outside of this compile unit.
However, sufficient information about the identifier, its type, its dimensions
if it is an array, its arguments if it is a procedure, must be given to allow
the identifier declared EXTERNAL to be treated properly. This complicates the
EXTERNAL declaration slightly as compared to the GLOBAL declaration.

Simple variables, formats, arrays, stacks, and procedures can be declared
external. Each is described in the following sections. Components, devices,
labels, and switches cannot be declared external.

7.1.2.1 External Simple Variable and Format Declaration - The form of an

external declaration for simple variables is:

EXTERNAL type idl, id2, ..., idk

where type is one of the type keywords HALF, INTEGER, DOUBLE, REAL, POINTER,
or ALPHA. Each identifier in the list following the type keyword is declared
as an external variable of the indicated type.

The form of an external declaration for format identifiers is:

EXTERNAL FORMAT idl, id2, ..., idk

Each identifier in the list following the keyword FORMAT is declared as the
name of an external format.

Examples:

EXTERNAL POINTER P,HERE
EXTERNAL ALPHA MESSAGE
EXTERNAL FORMAT PRERR

Note that no length information is required for ALPHA declarations.

7.1.2.2 External Stack Declaration - The form for an external declaration of
a stack is:

EXTERNAL type STACK id

where type is one of the keywords HALF, INTEGER, DOUBLE, REAL, or POINTER.
Additional identifiers of the same type may appear if separated by comnas.

7-2

, - ,t

NSWC TR 84-101

Examples:

EXTERNAL DOUBLE STACK DS
EXTERNAL POINTER STACK TP,FP,AP

Note that no size information is required.

7.1.2.3 External Array Declaration - An external array declaration has the
following form:

EXTERNAL type ARRAY idl(sizel), ..., id(size)

where type is one of the keywords HALF, INTEGER, DOUBLE, REAL, or POINTER.
idl, ..., id are identifiers declared as external arrays of the indicated
type. Each identifier is followed by a size specification in the form of one,
two, or three integer numbers separated by comas and enclosed in parentheses.
The size can also take the form of one, two, or three asterisks separated by
comas and enclosed in parentheses. Obviously, this specifies only the number
of dimensions but not the number of elements in the external array. If in an
external array declaration a set of consecutively listed array names has the
same number of dimensions and for each dimension the same range, then only the
first array name in this collection needs a size specification. For the
remaining names, the same size is assumed by default until a new size is
specified.

If the number of dimensions and the upper bound of each subscript are
included in an external array declaration, this information is used by the
compiler to perform certain compile time checks to ensure proper array
subscripting. If the upper bound of each array subscript is indicated by *,
then the upper bound is variable and can be accessed by looking at header
information which is stored along with the array storage block. In this case,
bounds checking must always be done at execution time and may result in less
efficient code.

Examples:

A. EXTERNAL REAL ARRAY T(2)

B. EXTERNAL, POINTER ARRAY X(*,*),Y(l)

7.1.2.4 External Procedure Declaration - An external procedure declaration

has one of the following forms:

EXTERNAL type ink PROCEDURE id (arg-list)

or

EXTERNAL type lnk PROCEDURE id

7-3

.' ! . • ,

NSWC TR 84-101

where type is one of the keywords HALF, INTEGER, DOUBLE, REAL, or POINTER if
the procedure is valued, or it is <empty> if the procedure is unvalued Ink
is either the keyword LINK or is <empty>. The procedure name id is followed
by arg-list, the list of argument descriptions. The syntax for arg-list is
described in the section on procedure specification (Section 6.4.2.4).

If the external procedure requires arguments, they must be described in
the order of occurrence within parentheses. It is also necessary to indicate
the transmission mode of these arguments.

If the formal parameter is an array, then the upper bound of each
subscript may be indicated the same as for external arrays.

Examples:

A. EXTERNAL INTEGER PROCEDURE A(REAL, INTEGER ARRAY(*,*))

B. EXTERNAL PROCEDURE Y(REAL ARRAY(5,10),POINTER PROCEDURE(INTEGER))

C. EXTERNAL LINK PROCEDURE Z(REAL VALUE,POINTER STACK)

Note that in Example C the first parameter of the LINK procedure Z is passed
by value rather than reference. Unless specified to be VALUE, all parameters
are assumed to be passed by reference.

7.1.3 Effect and Use of Global and External

In order to describe the effect and use of GLOBAL and EXTERNAL
declarations more precisely, we have to consider an entire program which is
the collection of independently compiled compile units combined together into
an object program structure consisting of one or more physical overlays. The
individual compile units of a program may all be in different virtual spaces
or some of them may be in the same virtual space. Likewise, they may be in
different physical overlays or they may all be in the same physical overlay.

In general, GLOBAL identifiers must be unique within the program. For BP
programs, more flexibility is provided (see Reference 6). Within a compile
unit, an identifier can be declared GLOBAL or EXTERNAL, not both. The compile
unit containing the GLOBAL declaration also contains the definition of the
identifier causing storage allocation for variable, array, or stack ids, data
generation for format ids, and code generation for procedure ids. The
EXTERNAL declaration appearing in a compile unit only equivalences the
identifier with a symbol defined outside of this compile unit. It follows
that for each identifier declared external in one or more of the compile units
in the program there must be exactly one GLOBAL declaration in a different
compile unit of the program. GLOBAL definitions and external references
cannot be in parallel physical overlays.

7-4

-IL

NSWC TR 84-101

7.1.4 Scope of Declarations

The scope of identifiers within a compile unit is strictly determined by
the block structure of the compile unit. This is even true for identifiers
declared GLOBAL or EXTERNAL. If X is declared GLOBAL in the compile unit M
then X can be referenced in M only within its scope in M. If X is declared
GLOBAL in M and EXTERNAL in separately compiled compile units Hi, ..., Mk,
then X can be referenced in each Mi within its scope in Mi. The effect of
GLOBAL X and EXTERNAL X is that references to X in M and in each Hi actually
refer to the same entity--the same storage location for data and format
identifiers, the same entry point for a procedure identifier. Therefore, the
effective "scope of X in the program" is the union of the individual scopes of
X in M and in each Hi, M2, ..., Mk.

All GLOBAL variable, array, and stack identifiers must have the
allocation mode OWN. GLOBAL procedures must be defined in the outermost
block.

7.1.5 Procedures and Link Procedures

A procedure may be declared as PROCEDURE or LINK PROCEDURE in the
EXTERNAL declarations. The corresponding EXTERNAL declaration should also say
PROCEDURE or LINK PROCEDURE. The distinction between regular procedures and
LINK procedures is significant only on the BP.

A LINK PROCEDURE is invoked using a LINK assembly instruction while those
defined as a PROCEDURE are invoked using a call instruction. The call
instruction can be used to invoke procedures in the same virtual space (in the
same node or a "father" node in a root segment Ftructure). A call instruction
can be used to invoke procedures in a "son" node if the user knows that the
"son" node is in the same virtual space. The LINK instruction reloads base
registers in the BP, and it should be avoided when possible. It is suggested
that a minimum number of virtual spaces be used to span the program. The
programmer is given the responsibility and versatility of controlling linkages
between nodes.

Procedure entry points may not be passed to a LINK procedure. An entry
point for a LINK procedure, EXEC procedure, or EXEC INTERRUPT procedure cannot
be passed to any procedure.

7.2 COMMON DECLARATION

The COMMON declaration provides a mechanism for defining a block of
memory for OWN data such that only the origin of this block is a GLOBAL symbol
and that various parts of this data block can be referenced symbolically by
names. It allows therefore, in effect, the free use of symbols for
communication between compile units without overloading the capacity of the
LINKER for handling EXTERNALS.

7-5

NSWC TR 84-101

The format for the COMMON declaration is:

ge COMMON org
Dl

Dk

ENDCOM

where

ge is either GLOBAL or EXTERNAL,

org is an identifier,

and Di is a declaration for simple variables, for arrays, or for
stacks.

If ge is the keyword GLOBAL, then the COMMON declaration is called a
global common; and the symbol org is in this case a GLOBAL symbol.
Otherwise, the declaration is called an external common and org is in this
case an EXTERNAL symbol. The rules for GLOBALS/EXTERNALS apply, which means,
among other things, that the symbol org must be unique in the set of compile
units using this COMMON declaration.

A global common causes OWN memory to be allocated. The memory allocated
for all symbols defined within a global common is called a common block. An
external common does not cause allocation of memory. It just informs the
compiler about the relative position of the various common symbols within the
common block. The symbol org serves only to define an origin for a common
block, it cannot be used by the programmer directly in the program. For
debugging purposes, however, the programmer can use it. To TOADC the global
common origin looks exactly like a global integer one-dimensional array.

If a number of compile units reference symbols defined within a common
declaration, then one compile unit should contain the global common and all
others should contain the external common for the same origin and for exactly
the same sequence of declaration Dl, ..., Dk. Actually, the name of a data
element defined in a certain position within a common could be different in
different compile units; it is the position that counts. However, using
different names is not a good programming practice.

The common block defined in a global common declaration may be longer
than the common block specified in an external common declaration with the
same org identifier.

All symbols defined within a common are considered OWN. However, for
reasons given at the end of this section, OWN must not be specified
explicitly.

7-6

* A f

...... -------

NSWC TR 84-101

Example:

GLOBAL COMMON ORG1
INTEGER LAT,LONG,RANGE ;
REAL ARRAY DUMP(10)
INTEGER NEW
DOUBLE STACK STCK(5)
POINTER PTR

ENDCOM ;

On the BP, the common block for this declaration is laid out in memory as
follows:

ORG
Word in

Identifier Memory Data Description

ORG1 0 LAT
1 LONG
2 RANGE
3 hole
4 header for DUMP
5

6 DUMPCO)
7
8 DUMPl)

26 DUMP(1O)
28 NEW
29 hole
30 header for STCK
31
32 12 words for STCK

44 PTR

All symbols defined within a global (external) common are not considered
global (external) by the compiler and they are therefore not passed on to the
assembler as globals (externals). This also means that symbols within a
common can be redefined in other blocks of the same compile unit for different
purposes. Such symbols are not considered multiply-defined by the compiler.

It is recommended that insert files be used for common declarations

excluding the first line which defines the origin as GLOBAL or EXTERNAL.

Example:

GLOBAL COMMON ORGI
INSERT INSORGI(FN)

should appear in the compile unit that is to contain the global common while:

7-7

.:T.. -t;Z a-- _Z --- w-7-N-E....

NSWC TR 84-101

EXTERNAL COMMON ORGI
INSERT INSORG1 (FN)

should appear in all compile units that use the same common as an external
common.

The member INSORG1 on the file FN looks like this:

/* COMMON ORG1 */
D;

Dk
ENDCOM ; /* END OF COMMON ORGI1 *

This technique allows programmers to maintain only one single copy for
each common on an insert file. The same individual declaration Di appears
then within a global common and within an external common. Since EXTERNAL OWN
makes no sense and is treated as an error by the compiler, therefore, the
symbols defined within a common should not be declared OWN.

Within a compile unit, the scope of a symbol declared within a COMMON
declaration is the same as the scope of the COMMON declaration.

7-8

~7-8

* 1

NSWC TR 84-101

CHAPTER 8

INPUT/OUTPUT

This chapter describes the facilities for formatted Input/Output (I/0)
provided in THLL. Transferring data to or from an external device requires
the specification of a device, a format describing the conversion of the data,
and the actual data. Device and format identifiers are given their meaning
via declarations. The actual data to be transferred are specified as a
sequence of actual parameters in the READ or WRITE call. This sequence of
parameters is called the I/0 list. The constructs that can appear in a I/0
list and their processing in conjunction with a format are described in the
section on Format Processing.

8.1 DEVICE DECLARArION

A device declaration defines an identifier to be the name of a TDCC
hardware device. A device identifier can be used as an actual parameter in a
procedure call. The only time it has to be used is in a call to the procedure
OPEN which opens a file for the specified device.

The device declaration has the following form:

DEVICE id - dev

where id is an identifier and dev is one of the device key words listed in

Table 8-1.

For convenience, a set of device declarations:

DEVICE idl - devl

DEVICE idk - devk

can equivalently be written as:

DEVICE idl - devl, idk - devk

8-1

Iego

NSWC TR 84-101

TABLE 8-1. DEVICE NAMES

Device Name Peripheral Device

SPRINT system printer (console)

CPRINT computer printer (DCC)

HDF magnetic disk file

MTF magnetic tape fire

KBDSS keyboard display subsystem

ICL inter-computer link

Example:

DEVICE DISK - MDF, TAPE " MTF, KB - KBDSS

Here, three device identifiers are defined as names for the MDF, the MTF, and
the KBDSS, respectively.

8.2 FORMAT DECLARATION

A format declaration defines an identifier to be the name of a format. A
format is a list of items that are interpreted during an I/0 operation for the
purpose of converting data from their internal representation to their
external representation as character strings and vice versa.

A format declaration has the following form:

FORMAT id (format-list)

where id is an identifier and format-list is a sequence of format items
separated by comas.

A format item has one of the following forms:

R'rn'
(S] s 'n'
IS] str
E$] I ' [-In'
[$] D '[-Jn'

] '[-Jn'

8-2

LL

NSWC TR 84-101

[S H '-n'
[$] [P'm'] F '[-In'

ES] E 'n'
[S1 L 'n'
[$] A 'n'
k (format-list)

where rn, n, m, and k are unsigned integer numbers; and str is a THLL string.

When a format is specified for a READ or WRITE operation, the format
items that appear in the format list are used from left to right in
conjunction with an I/O list containing variables and values. The I/0 list
may also contain loop arguments which are expanded into a list of variables
and values at execution time.

The first three format items above do not require to be matched with an
element from the I/0 list, they have an effect by themselves. All other
format items, except the last one, require to be matched up with an element
from the I/0 list for which the format item has the defined effect.
Processing format items in conjunction with an I/0 list are described in
Section 8.2.4.

The format item of the form k(format-list) is a short form for repeating
the format-list in parentheses k times.

With one exception, the integer number n in the above format items
specifies the field siLe, that is the number of characters read on input or
the number of characters produced on output. If the field size is preceded by
a minus sign, then the entire field must be filled with binary, octal,
decimal, or hexadecimal digits depending on the type of the number under
consideration. If the number does not fill the entire field, then leading
zeros are produced on output and are expected on input. If the field size of
a format item is preceded by a minus sign, then negative values produce a
sequence of *'s on output and signed numbers are illegal on input.

The exception is an I'n' or [P'm']F'n' format item preceded by a string
format item ending in the special character +. In this case, the size of the
field of the I'n' or [P'm']F'n' number is n+l;- and the size of the string is
one less than the size of the string length. The first position in the n+l
characters in the numeric field is set to the sign of the value on output and
must be a sign on input. Both adjacent format items m, st have the same memory
protection, that is, either both have $ specified or neither has.

The $ sign is optional for most format items. It is significant only for
a WRITE operation to one device, the KBDSS. If a format item includes a $
sign, then on output of the character sequence for that format item each
character in this sequence has the memory non-protect bit set. The
corresponding field on the display of the KBDSS can then be changed by the
KBDSS operator. A field on the KBDSS that corresponds to a format item not
including a $ sign is protected and cannot be changed by the KBDSS operator.

8-3

AD-A45 116 THIEL (TRIDENT HIGHER LEVEL LANGUAGE REFERENCE MANUAL I
U NAVAL SURF NS CEN IER DAULGREN VA H G HUBER

S UL 84 NSWC/TR-84 10N S FI DF I 1 2 N

I UILSI E F/U 9/2 NEEEEmhEEmhmEm
EIEIIIIEIIIEEE
EIIIIIEEIIEEEE
EE.EEE.EIIEEEE
IIIIIIIIEEIIEE
I.EEEEEEEIIIl

1,7U

1.25 1.4 ~

V-7

(
NSWC TR 84-101

[$] H ' -]n'$] [P'n'] F '[-n'
($] E 'n'
[$] L 'n'
(SI A 'n'
k (format-list)

where rn, n, a, and k are unsigned integer numbers; and str is a THLL string.

When a format is specified for a READ or WRITE operation, the format
items that appear in the format list are used from left to right in
conjunction with an I/O list containing variables and values. The I/0 list
may also contain loop arguments which are expanded into a list of variables
and values at execution time.

The first three format items above do not require to be matched with an
element from the I/0 list, they have an effect by themselves. All other
format items, except the last one, require to be matched up with an element
from the I/0 list for which the format item has the defined effect.
Processing format items in conjunction with an I/0 list are described in
Section 8.2.4.

The format item of the form k(format-list) is a short form for repeating
the format-list in parentheses k times.

With one exception, the integer number n in the above format items
specifies the field size, that is the number of characters read on input or
the number of characters produced on output. If the field size is preceded by
a minus sign, then the entire field must be filled with binary, octal,
decimal, or hexadecimal digits depending on the type of the number under
consideration. If the number does not fill the entire field, then leading
zeros are produced on output and are expected on input. If the field size of
a format item is preceded by a minus sign, then negative values produce a
sequence of *'s on output and signed numbers are illegal on input.

The exception is an I'n' or [P'i']F'n' format item preceded by a string
format item ending in the special character +. In this case, the size of the
field of the I'n' or [P'm']F'n' number is n+l; and the size of the string is
one less than the size of the string length. The first position in the n+l
characters in the numeric field is set to the sign of the value on output and
must be a sign on input. Both adjacent format items must have the same memory
protection, that is, either both have $ specified or neither has.

The $ sign is optional for most format items. It is significant only for
a WRITE operation to one device, the KBDSS. If a format item includes a $
sign, then on output of the character sequence for that format item each
character in this sequence has the memory non-protect bit set. The
corresponding field on the display of the KBDSS can then be changed by the
KBDSS operator. A field on the KBDSS that corresponds to a format item not
including a $ sign is protected and cannot be changed by the KBDSS operator.

8-3
I..

NSWC TR 84-101

8.2.1 Semantics of Format Items on Input

The following table lists for each format item its meaning in terms of
the action on a substring of the character sequence representing the input. N
is the length of the substring, N and M are integers.

Format Item Action

R'N' Skip over next N carriage returns.

S'N' Skip over next N characters.

str Skip over next LENGTH(str)
characters.

I'N' Generate integer value from a
decimal string.

D'N' Generate integer value from a binary
string.

O'N' Generate integer value from an octal
string.

H'N' Generate integer value from a
hexadecimal string.

[P'M']F'N' Generate real value from a floating
point string with possible exponent
ignoring P'M'.

E'N' Generate real value from floating
point string with possible exponent.

A'N' Use input string as is.

#/_/,I'-Nl Generate integer value from decimal
string assumed to be left-filled
with zeros and preceded by a sign.

#/4/,[P'M']F'-N' Generate real value from floating
point string assumed to be left-
filled with zeros and preceded
by a sign.

8-4

NSWC TR 84-101

8.2.2 Semantics of Format Items on Output

The following table lists for each format item its meaning in terms of
the conversion of a value to a string of characters which is part of the
output. For the first three format items, a string of characters is directly
produced; no value is required to be converted. For all other format items,
a value is matched up with the format item and converted as described.

When a positive N is specified then the field size is N. Both N and M
are integers.

Format Item Action

R'N' Generate N carriage returns;

for N-0, generate form feed.

S'N' Generate N spaces.

str Generate the string.

I'N' Generate a decimal integer character
string.

D'N' Generate a binary integer character
string.

O'N' Generate an octal integer character

string.

H'N' Generate a hexadecimal integer
character string.

[P'M']F'N' Generate a floating point number
character string with a decimal
fraction of M places. If P'M' is
omitted then P'O' is assumed.

E'N' Generate a floating point number
character string with an exponent.

L'N' Generate a T if the Boolean is true
or F if the Boolean is false, left-
justified in the field.

A'N' If N - 0, the field size equals the
number of characters in the ALPHA
variable. HALF, INTEGER, DOUBLE,
and REAL variables may be output
under A format. Each is be broken
into 8-bit fields for interpretation
as characters. Thus, each type has

8-5

MM

NSWC TR 84-101

an implied number of characters to
be generated. These implied numbers
arte: HALF is 2; INTEGER is 4;
DOUBLE and REAL are 1. A pointer to
an ALPHA variable)roduces the same
result as the ALPHi variable name.

#/ /,Iq-N1 Generate a decimal nteger character
string left-filled with zeros and
preceded by the sign of the value.

#/+/,[P'M']F'-N' Generate a floating point number
string left-filled with zeros and
preceded by the sign of the value.

When variables are converted to E or F format, rounding occurs. If the
converted value does not fit into the field specified by the corresponding
format item, the field is filled with asterisks. If the converted value does
not fill the field, it is right-justified and filled with blanks or with
leading zeros if the optional minus sign appears with types I, 0, H, F, or D.
For ALPHA format, if N is less than the actual or implied number of
characters, the converted variable is filled with asterisks. If N is greater
than the actual or implied number of characters, the field is left-justified
and blank-filled.

8.2.3 Format Examples

8.2.3.1 WRITE Printer/Keyboard Formats -

Format Item Digits Spaces Sign Point

D'N' 0-1 Yes No No
D'-N' 0-1 No No No
O'N' 0-7 Yes No No
0,-N' 0-7 No No No
H'N' 0-F Yes No No
H'-N' 0-F No No No
I'N' 0-9 Yes Minus No
V-N' 0-9 No No No
#//, I'-N' 0-9 No Yes No
F'N' 0-9 Yes Minus Yes
F'-N' 0-9 No No Yes
#/+/, F'-N' 0-9 No Yes Yes
E'N' 0-9 No Yes Yes
L'N' T,F Yes No No
A'N' 64-Character set

8-6

NSWC TR 84-101

NOTES: N is an integer; M is an integer.

1. A value of length greater than N or a negative value with I'-N' or
F'-N' writes all asterisks in the field.

2. If P'H' is not specified with F'N' or F'-N', then P'0' is assumed.

3. F'N' or F'-N' uses two digits to left of point; i.e., -0. or 10. for
N = 3.

4. E'9' is smallest E specification; i.e., +.XE+XXXX.

5. Types D, 0, and H are considered bit patterns, not signed numbers.

8.2.3.2 READ Keyboard Formats -

Format Item Digits Spaces Sign Point

D'N' 0-1 No No No
D'-N# 0-1 No No No
O'N' 0-7 No No No
0'-N' 0-7 No No No
H'N' 0-9 No No No
H'-N' 0-9 No No No
I'N' 0-9 No Optional No

0-9 No No No
#/4/, I'-N' 0-9 No Required No
F'N' 0-9 No Optional Yes
F'-N' 0-9 No No Yes
#/1/, F'-N' 0-9 No Required Yes
'N' 0-9 No Optional Yes
A'N' 0-9 Yes Yes Yes

NOTES: N is an integer; M is an integer.

1. If P'M' is not specified with F'N' or F'-N', then P'0' is assumed.

2. A numeric field that contains all spaces or all underlines is not
processed; i.e., the corresponding list element is not altered.

3. There is no T or F on the keyboard for L'N' input.

8-7

4 ,I <,..

NSWC TR 84-101

8.2.3.3 WRITE Printer/Keyboard Format Examples -

Format Item Value - 0 Value 1 Value - -1

D'2' bO bl ** Note 2, 5
D'-2' 00 01 ** Note 2, 5
0'2' bO bl ** Note 2, 5
0'-21 00 01 ** Note 2, 5
H'2' bO bl ** Note 2, 5
H'-2' 00 01 ** Note 2, 5
I'2' bO hi -1
11-2# 00 01 ** Note 3
#/+, I'-2' +00 +01 -01
F'3' bO. bl. -1.
F'-3' 00. 01. Note 3
#/+/, F'-3' +00. +01. -01.
E'9 +.OE+0000 +.1E+0001 -.lE+0001
E'8' ***** **** **** Note 4

L'2' Fb Tb Tb

NOTES:

1. b means space.

2. Field too short for value; i.e., the integer - - FFFFFFFF(HEX).

3. Sign illegal in I'-2' and F'-3' format.

4. Field too short for value.

5. Types D, 0, and H are considered bit patterns, not signed numbers.

8.2.3.4 READ Keyboard Format Examples -

Format Item Legal Illegal

D'2' 01 bl, +1, -1, 02
D'-21 01 bl, +1, -1, 02
0'2' 01 bl, +1, -1, 08
01-2' 01 bl, +1, -1, 08
H'2' 01 bI, +1, -1
H'-21 01 bl, +1, -1
I'2' 01, +1, -1 bl
Il-21 01 bl, +1, -1
#/+/, I'-2' +01, -01 bOl, +bl
F'3' 01., +1., -1., 001 bl.
F'-3' 01., 001 bl., +1., -1., bbl

8-8

I -i

NSWC TR 84-101

#1!1, F'-3' +01., -01., +001 bOl., +bl, +bbl
E'9' +.1E+0001, -.1E+0001, b.1E+0001

0.1E+0001

NOTES:

1. b means space.

2. The decimal point in the input data overrides the format
specification P'M' for real numbers. X is an integer.

8.2.4 Format Processing

The READ/WRITE procedures interpret a format in order to decode/encode
data.

A format list contains one or more Format Items (FIs) separated by commas
and enclosed by parentheses.

Example:

(FII, F12, ... , FIn)

FIs can be grouped into three classes. They are:

A. Form Elements (FEs) - space count S'n', line feeds R'n', or a THLL
string str.

B. Action Elements (AEs) - a printed representation of a valued element
indicated by I'n', O'n', H'n', D'n', P'm'F'n', E'n', L'n', or A'n',
where m and n are decimal integers.

C. Repeat Elements (REs) - a sequence of one or more FIs, separated by
commas, enclosed by parentheses, and prefixed by an integer number,
such as:

n(FIl, F12, ..., FIk), where n is an integer number.

An FE has a meaning by itself and is not matched up with an actual
parameter in an I/0 call. An AE specifies an external representation of data
for an actual parameter in an I/0 call. Therefore, it needs to be matched up
with an actual parameter during the I/O operation. REs, finally, are merely
for the convenience of the programmer and are not needed. Any formats
containing REs can be expanded into an equivalent format without repeats by
replacing each repeat element RE by its expansion E(RE).

8-9

NSWC TR 84-101

The expansion E(FI) of a format list element FI is defined as follows:

e FI if F1 is not an RE,

E(FI1), ... , E(FIk) if FI - n(FIl, ... , FIk)
E(FI) where n - 1,

E(FIl), ... , E(FIk), E((n-l)(FI1, ... , FIk))
otherwise.

An I/O List (IOL) is the sequence of actual parameters in a READ/WRITE
procedure call after the fifth parameter. The items in this list can be
expressions, array identifiers, stack identifiers, or loop arguments. This
list can be thought of as being expanded, one item at a time, during I/O
processing.

A loop argument is like a loop statement except that the delimiter DO and

the statement following it is replaced by:

[al, ... ak)

where each ai is again an expression, an array identifier, a stack identifier
or a loop argument. Thus, a loop argument looks like this:

loop control [al, ak)

where loop control is one of the following four constructs:

WHILE e
FOR var - el STEP e2 UNTIL e3
FOR var - el STEP e2 WHILE e4
FOR var - .1 REPEAT e2 WHILE e4

Some of the expressions in the loop control construct change, in general,
after each pass through the loop. This is expressed by the following
notation:

LP(o) - loop control at the beginning

LP() - loop control after the i'th pass through the loop.

The expansion EXP(q) of an actual parameter in IOL can now be defined as
follows:

8-10

NSWC TR 84-101

q if q is an expression,

the ordered sequence of all subscripted variables
within the same array if q is an array id, or
within the same stack if q is a stack id (the

ordering is here from the bottom to the top),
EXP(q) -

empty, if q is a loop argument and the terminating
condition is met,

(EXP(al), ... , EXP(ak)], EXP(LP(1)[al, ... , ak))

if q is loop control [al, ..., ak]

While executing formatted READ/WRITE procedures, the list of expanded
(REPEAT free) FIs is scanned from left to right. If the next item is an FE,
then it is processed without affecting the IOL. If the next item is an AE,
then it is matched up with the next expression in the expanded IOL. If the
format list is exhausted but the IOL is not, then scanning starts again at the
beginning of the expanded format list. The process terminates when one of the
following conditions is satisfied:

A. The next item in the expanded format list is an AE and the IOL is

exhausted; or

B. The format list is exhausted and the IOL is exhausted.

Note that arrays are stored in memory row by row according to the scheme
described in Section 3.3.

Note that stacks are stored in memory as: S(N), S(N-1), ... , S(0).

8.2.4.1 WRITE Printer/Keyboard Arrays and Implied Loops - The following ex-
cerpt of THLL code illustrates the use of loops to print an array. The array
may also be printed by using only the array identifier.

.1

FORMAT FID (R'', 4(I'-2', S'1'))
INTEGER ARRAY IA (1,3), BUF(70) ; INTEGER I,J
POINTER PT ; DEVICE SPR - SPRINT

8
8-11

NSWC TR 84-101

IA (0,0) - 00 ; IA (0,1) - 01 ; IA (0,2) - 02; IA (0,3) - 03;
IA (1,0) - 10 ; IA (1,1) - 11 ; IA (1,2) - 12 ; IA (1,3) - 13
PT - OPEN (SPR, #//, 70) ;
/* THE NEXT STATEMENT PRINTS THE ARRAY USING ONLY THE

IDENTIFIER */
WRITE (PT, LOC BUF(O), 0, FID, 0, IA)
/* THE NEXT STATEMENT PRINTS THE ARRAY USING A LOOP */
WRITE (PT, LOC BUF(), 0, FID, 0, FOR I - 0 STEP 1 UNTIL 1

[FOR J - 0 STEP 1 UNTIL 3 [IA (1,J)1)
/* THE NEXT STATEMENT WILL PRINT THE VALUES ASSIGNED TO THE

ARRAY ELEMENTS */
WRITE (PT, LOC BUF(O), 0, FID, 0, FOR I - 0 STEP 1 UNTIL 1

[FOR J - 0 STEP 1 UNTIL 3 [1*10 + il))

Each WRITE statement generates two lines of output as shown below:

00 01 02 03
10 11 12 13

Note that the leading zeros were the result of using the minus sign in the
field specification in the format.

8.3 INPUT/OUTPUT PROCEDURES

The THLL input/output procedures can be used to transfer information
between internal storage and external devices.

8.3.1 OPEN Procedure

Each user-defined channel of communication between internal program
storage and a peripheral device must be specified by the user via the pointer
procedure OPEN. This procedure opens the file, creates a THLL File Control
Block (THLLFCB), and returns the address of the data block to the user. The
form of an OPEN procedure call is:

OPEN(DEV,FN,SIZE)

where

the returned value is the address of a THLLFCB and

8-12

NSWC TR 84-101

DEV is the name of an I/0 device.

FN is a DOUBLE variable or a string, up to eight characters long,
which specifies the data file that is to be opened. Specific data
file names should be used for the MDF or MTF. A null string may be
used for all other devices. Whenever a string is specified, it is
converted to a DOUBLE. An ALPHA variable may not be used.

SIZE is an integer expression which indicates the maximum number of
words that are to be transferred by an I/0 operation. For an MDF
WRITE, the SIZE parameter must be the actual number of words to be
transferred. For the KBDSS, the SIZE parameter must be 64. For
CPRINT and SPRINT, the SIZE parameter may not exceed 1040.

The allocation of storage for the THLLFCB is machine-dependent.

BP:
Eight words for the FCB are allocated by extending the stackfrar or
the procedure in which the call to OPEN appears. This means th this
storage area is released on exit from that procedure. As a rul the
user should close the file before the procedure in which the e was
opened is exited.

VAX, MC68000:
The allocation of storage to the FCB is not tied to the stackframe of
the procedure calling OPEN. The life time of the FCB is from the
point of creation by OPEN until its release by CLOSE or until the
program ends.

The content of the FCB is machine-dependent. Details are described in
References 1, 2, or 3.

Example 1:

DEVICE UNIT - MDF
POINTER P ;
P - OPEN(UNIT,#/PGMDAT/,256)

This example opens a file with the name PGMDAT on the MDF with a record

length of 256 words.

Example 2:

DEVICE UNIT - KBDSS
POINTER DISP
DISP - OPEN(UNIT,#//,64)

This example opens a file with no name on the KBDSS with a record length

of 64 words.

8-13

i"98wf* . '

NSWC TR 84-101

8.3.2 READ and WRITE Procedures

The READ and WRITE procedures cause information to be transferred in
either sequential character string or binary form.

8.3.2.1 READ Procedure - The form of a READ procedure call is:

READ(P,PTR,OPT,FID,POSN,A,A2, ..., An)

where

P pointer to a THLLFCB as returned by an OPEN
pointer procedure.

PTR - pointer to a data area which contains at
least as many words as were specified by
the SIZE parameter of the OPEN procedure.

OPT - integer expression which specifies certain
read options (see Reference 1).

FID - format identifier or pointer expression
for formatted reads of the KBDSS. This
parameter should be 0 for unformatted reads
of MDF, MTF, or ICL. See Section 8.2 for
format declarations.

POSN - integer expression specifying the relative
file position for reads from the MDF, MTF,
or ICL. It should be 0 for formatted
reads.

Al,A2, - actual parameters which are matched with
An the format list of the format declaration

referenced by FID. The Ai's may be array
or stack identifiers, simple, subscripted, or
component variables, or loop arguments. The
Ai may be omitted if the read is unformatted.

A call to READ not only reads input from the specified device, it also
causes information to be put into the FCB. The information in the FCB as a
result of READ is machine-dependent and is described in References 1, 2, or 3.

8-14

NSWC TR 84-101

8.3.2.2 WRITE Procedure - The form of a WRITE procedure call is:

WRITE(P,PTR,OPT,FID,POSN,E1,E2, ..., En)

where

P - pointer to a THLLFCB as returned by an OPEN
pointer procedure.

PTR pointer to a data area which contains at
least as many words as were specified by
the SIZE parameter of the OPEN procedure.

OPT - integer expression specifying certain write
options (see Reference 1).

FID - format identifier or pointer expression for
formatted writes to the KBDSS, CPRINT, or
SPRINT. This parameter should be 0 for
unformatted writes to the MDF, MTF, or ICL.
See Section 8.2 for format declarations.

POSN - integer expression specifying the relative
file position for writes to the MDF, MTF,
or ICL. It should be 0 for formatted
writes.

E1,E2, - actual parameters which are matched with
En the format list of the format declaration

referenced by FID. The Ei may be array
or stack identifiers, expressions, or loop
arguments. The Ei's may be omitted for
unformatted writes.

For the KBDSS, the buffer pointed to by PTR should have at least 64
words. The buffer contains the formatted data after a WRITE to the KBDSS is
completed. These data represent an image of the data being displayed. A
subsequent READ from the KBDSS uses the data as presently stored in the buffer
and transfer them into memory words for variables as specified in the READ
statement. Therefore, to preserve the integrity of the data, the programmer
should not use the buffer between a KBDSS WRITE and READ for other purposes.

A call to WRITE not only produces output on the specified device, it also
causes information to be put into the FCB. The information in the FCB as a
result of WRITE is machine-dependent and is described in References 1, 2, or
3.

38-15

NSWC TR 84-101

8.3.3 CLOSE Procedure

The CLOSE procedure causes the runtime system to release the FCB from
further I/O use. The form of the CLOSE procedure call is as follows:

CLOSE (P)

where

P is a pointer variable which contains the address of the THLLFCB as
defined in the OPEN procedure.

8.3.4 IOWAIT Procedure

The IOWAIT procedure causes the THLL program to wait at this point until
all I/O is done. When all I/O is complete, control is returned from the
IOWAIT procedure and the THLL program continues its execution.

The form of the IOWAIT procedure call is as follows:

IOWAIT

8-16

L -.

NSWC TR 84-101

CHAPTER 9

STANDARD PROCEDURES

All standard procedures in THLL are predefined; the user does not have
to supply an external declaration for them. The user may, however, redefine a
predefined symbol just like any user defined symbol.

Standard procedures are called like other procedures:

P(al, a2, ..., ak)

where P is the procedure name and each ai is an actual parameter. The
procedure call can only be in a statement position if P is unvalued; it can
be in a statement or in an expression position if P is valued.

9.1 PREDEFINED NUMERICAL FUNCTIONS

Table 9-1 contains the list of standard numerical functions. Different
types for the same argument are indicated by type abbreviations H, I, D, R, or
P enclosed in braces.

The ABS function produces the absolute value of its argument.

The SIGN function determines the sign of its argument and has a positive
or negative one (+1) of the appropriate type as its value. If the argument is
0, a positive 1 of the appropriate type is returned as the function value.

The SQRT function returns the square root of the argument as its value.
If the argument is negative, the illegal operand fault is set on the BP.

The FLOAT functions interpret the value of the first argument as an
integer and converts it into a floating point number which is the function's
value. If the optional second argument is used and has a value of N, a scale
factor of 2**N is applied to the function value.

The FIX functions interpret the value of the first argument as a floating
point number and convert it to an integer which is the function value. For
FIXI, if the optional second argument with a value of N is used with R or I
type first arguments, a scale factor of 2**N is applied.

9-1

NSWC TR 84-101

TABLE 9-1. NUMERICAL FUNCTIONS

Function Name Type of Arument(s) Type of Value

ABS IH,I,D,R} H, I, D, R correspondingly
SIGN LH,I,Di H, I, D (1 or -1)

R R (I. or -1.)
SQRT {H,I,D,R} R
SIN {H,I,D,Rl R
COS {H,ID,R R
TAN IH,I,D,R R
COT {HI,D,R} R
ARCCOS {H,I,D,R} R
ARCSIN {HID,R} R
ARCTAN {HI,D,R} R
ARCCOT {HI,D,R} R
LN {H, I,D,RI R
EXP {HI,D,R} R
FLOAT {HI,D} R
FLOAT R, I1 [,I R
FIH R H
FIXI (R, I] (,I] I
FIXD R D
SHIFTA {H,I,D}, {HI,D} H, I, D corresponding

to argument 1
SHIFTL {H,I,D}, {H,I,D} H, I, D corresponding

to argument I
SHIFTR {H,I,D}, {IH,I,D H, I, D corresponding

to argument 1
TEST.BIT IH,I,DJ, P I
CLR.BIT {H,I,D}, P I
SET.BIT LH,I,D), P I
TGL.BIT IH,I,D}, P I
FIND.BIT {H,I,DI, P I
POCA R,R,R,R N
CAPO R,R,R,R N
ROAX R,R,R,R,R N
ROTA R,R,R,R,R N

Examples of FIX and FLOAT:

FIXI(AI), where A real and I integer, - FIXI(A*2**I)
FIXI(J,I), where J and I integer, SHIFTA(J,I)
FLOAT(J,I), where J and I integer, - FLOAT(J)*2**l
FLOAT(A,I), where A real and I integer, A*2**I

9-2

.1

NSWC TR 84-101

In all cases the following identities hold:

FIXI(A,0) - FIXI(A), where A is of type I or R
FLOAT(A,O) - FLOAT(A), where A is of type I or R

The operation of FIXH, FIXI, and FIXD is machine-dependent.

BP, MC68000:
The value returned is the greatest integer less than or equal to the
argument. Thus FIXI(-4.5) = -5 and FIXI(4.5) - 4.

VAX:
The value returned is the truncated argument. Thus FIXI(-4.5) =-4
and FIXI(4.5) - 4.

Of the three target machines, BP, VAX, and MC68000, the BP has the most
stringent restrictions of the arguments for the trigonometric functions.
Programs designed for portability should adhere to these rules for the BP. On
the BP, the trigonometric functions SIN, COS, TAN, and COT are implemented
with CORDIC instructions. The argument for these instructions must be in
radians between -pi and pi, inclusively. In execution on the BP, if the
argument is out of bounds, the illegal operand fault is set on the BP.

For the inverse trigonometric functions ARCSIN, ARCCOS, ARCTAN, and
ARCCOT, the results are in radians. ARCCOT and ARCCOS return values between 0
and +pi . ARCTAN and ARCSIN return only principal values between -pi/2 and
+pi/2. It is up to the programmer to implement four-quadrant capability if it
is needed.

The LN function produces the natural log of the argument. If the
argument is negative or zero, the illegal operand fault is set on the BP.

The EXP function produces e raised to the power specified by the
argument.

For the shift functions, argument I is shifted according to argument 2.
The absolute value of argument 2 determines how many places to shift. The
shift is left if the second argument is positive and right if it is negative.

The effect of shift operations may be machine-dependent for type HALF.

BP:
A HALF operand is extended to a 32-bit INTEGER quantity and then
shifted.

MC68000:
A HALF operand is shifted as a 16-bit quantity.

VAX:
HALF operands are 32-bit INTEGER quantities. Therefore, the VAX and
the BP behave the same with respect to shift operations.

9-3

NSWC TR 84-101

SHIFTA is an arithmetic shift which provides sign extension on right
shifts and fills places with zeros on left shifts.

SHIFTL is a logical shift which fills places with zeros regardless of
direction.

SHIFTR is a rotate shift such that the high order bits become low order
bits in a left shift and vice versa for a right shift.

There are five predefined bit functions. Each takes two arguments, the
first being an integer value n between 0 and 31, the second a pointer value p.

For TEST.BIT, CLR.BIT, SET.BIT, and TGL.BIT, the n'th bit in the memory
word pointed to by p is affected and the condition code is set. TEST.BIT
tests the bit; CLR.BIT sets the bit to 0; SET.BIT sets the bit to 1; and
TGL.BIT switches the bit to 0 if it were 1 or to 1 if it were 0. In each
case, the function value is the condition code as defined in Table 9-2.

TABLE 9-2. PREDEFINED BIT FUNCTION CONDITION CODES

Condition Code Result

0 Bit n was 0

2 Bit n was I

8 Nonexistent bit error
(n LES 0 or n GRT 31)

For FIND.BIT, n designates the starting bit position from which the
memory word pointed to by p is scanned while searching for the first set bit.
The scan is left to right beginning at bit n. The value of FIND.BIT is
defined as follows:

FIND.BIT(n,p) - negative integer if no bit is set,
bit position of set bit, otherwise.

POCA is an unvalued function which converts from polar to Cartesian
coordinates. The form of a call is:

POCA(r,theta,x,y)

where r and theta are real expressions, and x and y are real variables. Theta
Ls an angular measure in radians. The programmer should ensure its value is
between -pi and +pi. The result of POCA is to set x and y to:

9-4

I , .

NSWC TR 84-101

x = r*COS(theta)
y - r*SIN(theta)

CAPO is an unvalued function which converts from Cartesian to polar
coordinates. The form of a call is:

CAPO(x,y,r, theta)

where x and y are real expressions, and r and theta are real variables. Theta
is an angular measure in radians whose returned value is between -pi and +pi.
The result of CAPO is to set r and theta to the solution of the equations:

x = r*COS(theta)
y - r*SIN(theta)

Thus POCA converts polar coordinates to Cartesian coordinates and CAPO does
the inverse. This means that after evaluation of:

POCA(el,e2,x,y)

CAPO(x,y,r, theta) p
the variables r and theta have the values el and e2, respectively. POCA is
the inverse function of CAPO and vice versa.

ROAX is an unvalued function which rotates a vector specified by its
Cartesian coordinates and computes the Cartesian coordinates of the rotated
vector. The form of a call is:

ROAX(xy,theta,xl ,yl)

where x, y, and theta are real expressions, and xl and yl are real variables.
Theta is an angular measure in radians. The programmer should ensure its
value is between -pi and +pi. ROAX interprets x and y as:

x - r*COS(phi)
y - r*SIN(phi)

and sets xl and yl to:

xl - r*COS(phi+theta)
yl - r*SIN(phi+theta)

ROTA is an unvalued function which rotates the reference frame of a
vector by an angle. The form of a call is:

ROTA(x,y,theta,xl ,yl)

where x, y, and theta are real expressions, and xl and yl are real variables.

Theta is an angular measure in radians. The programmer should ensure that the
value of theta is between -pi and pi. ROTA computes the new coordinates

9-5

01,

NSWC TR 84-101

(xl,yl) of the vector (xy) after rotation of the reference frame by the angle
theta. This means:

ROTA(x,y,theta,xlyl) = ROAX(x,y,-theta,xl,yl).

The POCA, CAPO, ROAX, and ROTA functions allow the solution of equations
involving trigonometric expressions more efficiently than a direct approach
using the standard trigonometric functions and their inverses. Examples may
be found in Chapter 10.

Additional information is also available in Reference 7.

9.2 STRING FUNCTIONS

There are five functions available for string manipulation. Strings are
of type A. Wherever an ALPHA variable may be used, it may be replaced by a
pointer to the ALPHA variable.

The number of characters in a string is called the length of the string.
A string variable (also called ALPHA variable) allows storage of strings of
different length. The length of the longest string that can be stored in a
string variable X is called the maximum length of X. If X is declared by
ALPHA X(00), then the maximum length of X is 11. The maximum length of a
string is 256 characters.

Each character in a string or ALPHA variable has a position number
starting with 0 for the first character, 1 for the second, etc.

A. LENGTH(X) - This function returns the length of the string X as an
integer value. A pointer to X may be used as the argument.

B. KLENGTH(X) - This function returns the maximum length of X as an
integer value. A pointer to X may be used as the argument.

C. MOVEC(X,DX,Y,DY,L,V) - This function does not return a value and is
assigned the type N, no type. Its effect is to move a substring of Y of
length L beginning at position DY into X starting at position DX. The precise
conditions that can occur and the corresponding actions are listed as follows.
On the VAX and on the MC68000, the conditions are checked in the order listed.
On the BP, the conditions are checked in the order 2, 3, 1, 5, 4.

Condition Action

(1) DX > length(X) set illegal operand fault (on
BP) and return

(2) DY > length(Y) set illegal operand fault (on
BP) and return

9-6

NSWC TR 84-101

(3) DY + L > length(Y) shorten L to length(Y) - DY

(4) DX + L > maximum length(X) shorten L to mlength(X) - DX

(5) DX + L > length(X) if V NEQ 0, shorten L to
length(X) - DX, otherwise, do
not shorten L

All conditions are checked move substring and return

Thus, if V = 0, then no truncation of the moved substring to the length
of the remainder string of X occurs. Omission of V is equivalent to V = 0.

The parameters DX, DY, L, and V are of type H, I, or D. The parameters X
and Y may be either ALPHA variables or pointers to ALPHA variables.

D. CONC(A,X,DX,LX,Y,DY,LY) - This function is also of type N. Its
effect is to form a new string A from strings X and Y by appending a substring
of Y of length LY beginning at DY onto a substring of X of length LX beginning
at DX. Again, the conditions that can occur and the corresponding actions are
listed in the following table. On the VAX and and on the MC68000, the
conditions are checked in the order listed. On the BP, the conditions are
checked in the order 1, 3, 5, 2, 4, 6.

Condition Action

(1) DX ; length(X) set illegal operand fault (on
BP) and return

(2) DY > length(Y) set illegal operand fault (on
BP) and return

(3) DX + LX > length(X) shorten LX to length(X) - DX

(4) DY + LY > length(Y) shorten LY to length(Y) - DY

(5) LX ; maximum length(A) shorten LX to mlength(A)

(6) LX + LY > maximum length(A) shorten LY to mlength(A) - LX

All conditions are checked concatenate substrings and
store into A

The parameters DX, LX, DY, and LY are of type H, I, or D. The parameters
A, X, and Y may be either ALPHA variables or pointers to ALPHA variables.

E. ORDERC(X,Y) - This function produces a value of type I. X and Y are
strings. The value of ORDERC is:

9-7

• _

NSWC TR 84-101

(3) DY + L > length(Y) shorten L to length(Y) - DY

(4) DX + L > maximum length(X) shorten L to mlength(X) - DX

(5) DX + L > length(X) if V NEQ 0, shorten L to
length(X) - DX, otherwise, do
not shorten L

All conditions are checked move substring and return

Thus, if V - 0, then no truncation of the moved substring to the length
of the remainder string of X occurs. Omission of V is equivalent to V - 0.

The parameters DX, DY, L, and V are of type H, I, or D. The parameters X
and Y may be either ALPHA variables or pointers to ALPHA variables.

D. CONC(A,X,DX,LX,Y,DY,LY) - This function is also of type N. Its
effect is to form a new string A from strings X and Y by appending a substring
of Y of length LY beginning at DY onto a substring of X of length LX beginning
at DX. Again, the conditions that can occur and the corresponding actions are
listed in the following table. On the VAX and and on the MC68000, the
conditions are checked in the order listed. On the BP, the conditions are
checked in the order 1, 3, 5, 2, 4, 6.

Condition Action

(1) DX > length(X) set illegal operand fault (on
BP) and return

(2) DY > length(Y) set illegal operand fault (on
BP) and return

(3) DX + LX > length(X) shorten LX to length(X) - DX

(4) DY + LY > length(Y) shorten LY to length(Y) - DY

(5) LX > maximum length(A) shorten LX to mlength(A)

(6) LX + LY > maximum length(A) shorten LY to mlength(A) - LX

All conditions are checked concatenate substrings and

store into A

The parameters DX, LX, DY, and LY are of type H, I, or D. The parameters
A, X, and Y may be either ALPHA variables or pointers to ALPHA variables.

E. ORDERC(X,Y) - This function produces a value of type I. X and Y are
strings. The value of ORDERC is:

9-7

I.

NSWC TR 84-101

-1 for X less than Y

0 for X equal to Y

1 for X greater than Y

This assumes that all characters are ordered according to the value of their
numerical code on the BP and that strings are ordered lexicographically. As a
special case, if X is an initial substring of Y then X precedes Y. The
parameters X and Y in ORDERC(X,Y) may be ALPHA variables or pointers to ALPHA
variables.

Examples:

ALPHA X(9),Y,Z,A,W(l),V
X - #*JOHN* ; W = #*NY* ;
Y - #*JOHNATHAN* ; V = #*NY* ;
Z = #* JOHN*;

LENGTH(X) returns a value of 4
MLENGTH(Y) returns a value of 10
ORDERC(X,Y) returns a value of -1
ORDERC(W,Y) returns a value of +1
ORDERC(W,V) returns a value of 0
MOVEC(X,2,Y,0,2) produces X - #*JJOO*
CONC(A,Z,4,4,V,0,2) produces A - #*JOHNNY*

9.3 STACK FUNCTIONS

A stack is a storage area accessed by the "last in, first out" or LIFO
method. Stacks must be of type H, I, D, R, or P.

PUSHCX,E) is a function which places an element on the top of stack X. E
is an expression whose value is determined, converted to the type of X, and
placed at the top of X. This same value is returned as the value of PUSH.

POP(x) is a function which removes or "pops" off the top element of stack
X. The function value is the top element and has the type of X.

Subscripted stack identifiers form legal variables and provide another
access method for stacks. However, the programmer should be sure that such a
stack element exists. The occurrence of a subscripted stack identifier in the
left side of an assignment statement replaces the existing stack element. It
does not cause an element to be pushed onto the stack.

Before using a subscripted stack element, the programmer should establish
that the element exists. The top element of a stack X is X(0) and the K'th
item from the top is denoted as X(K).

9-8

NSWC TR 84-101

STACKWC(X) is a function of type I which returns the number of entries in
stack X.

STACKSC(X) is a function of type I which returns the number of unused
entries in stack X.

Although each element of a double or real stack requires two memory
locations, the values returned by STACKWC and STACKSC are strictly element
counts, not word counts.

9.4 ARGUMENT FUNCTIONS

Four functions are provided to support optional arguments. These are
arguments that do not correspond to formal parameters in the procedure being
called.

ARGCNT
ARGPTR (N)
ARGTYPE (N)
ARGSYNCL (N)

ARGPTR is a pointer procedure and the other functions are integer
procedures. N is an integer value identifying the N'th actual parameter of
the current procedure. Details about the meanings of the function values are
described in Section 6.7.

9.5 MISCELLANEOUS FUNCTIONS

BOUND(A,K) - This function is applied to an array A and returns an
integer value which is the upper limit of the K'th dimension of the array A.
K must be 1, 2, or 3 and is of type I. If K exceeds the declared dimension of
A, then the value of BOUND is zero.

SWA(N) - N is an integer. The function value is N considered as a
pointer. For the BP, that means it has base register N/2**12 and displacement
N MOD 2**12. This function can be used to access known addresses in memory
via components.

9-9

I.I

NSWC TR 84-101

CHAPTER 10

EXAMPLES

This chapter contains two examples whic.. illustrate the advantages of
using the standard functions ROAX, POCA, and CAPO.

The examples are annotated to point out particular features. Both
examples have been compiled so that the cross reference and symbol tables can
be examined.

In the annotation, line numbers are used for references. In the
examples, this appears on the left as generated in compilation.

Example: Problems Involving Polar and Cartesian Coordinates

I. If the point P has the polar coordinates (r,theta,lambda) and the
Cartesian coordinates (x,y,z), then the following equations hold:

x " r*cos (theta)*cos (lambda)

y - r*cos(theta)*sin(lambda)

z - r*sin(theta)

From the polar coordinates, the Cartesian coordinates are computed by the
following two statements:

POCA(r,theta,u,z)

POCA(u,lambda,x,y)

Conversely, from the Cartesian coordinates, the polar coordinates are
calculated by the following two statements:

CAPO(x,y,u,labda)

CAPO(u,z,r,theta)

10-1

NSWC TR 84-101

2. Let (theta,lambda) be the geographic latitude and the geographic
longitude of a point on Earth. Consider the problem of computing the azimuth
angle A and the range angle R of a target at position (theta2,lambda2)
relative to the launch point (thetal,lambdal). If D - lambda2 - lambdal,
then, with the exception of two cases, the angles A and R are uniquely
determined by the equations:

(1) cos (R) - sin (theta2) *sin (thetal) +cos (theta2) *cos (thetal) *cos(D)

(2) sin(R)*cos(A) - sin(theta2)*cos(thetal)-cos(theta2)*sin(thetal)*cos(D)

(3) sin(R)*sin(A) - cos(theta2)*sin(D)

The two exceptional cases are:

(a) thetal - theta2, lambdal - lambda2: launch coincides with target.

(b) thetal - -theta2, lambdal - lambda2 - pi: launch is antipode of
target.

We use the notation:

xl - sin(R)*cos (A)

yl - sin(R)*sin(A)

zl - cos (R)

According to (1) and (2), xl and zl are the Cartesian components of a
vector that is the result of rotating the vectors with the components:

x - sin(theta2)

y - cos(theta2)*cos (D)

by the angle thetal:

xl - x*cos(thetal) - y*sin(thetal)

zl - x*sin(thetal) + y*cos(thetal)

xl and zl can be computed from x, y, thetal by one procedure call:

10-2

9 ,

NSWC TR 84-101

ROAX(x,y,thetal,xl,zl)

Thus, in order to solve the above problem, we first compute x, y,
(z " yl) from theta2 and D by two calls to POCA:

POCA(l,theta2,xy,x)

POCA(sy,D,y,yl)

Then, xl and z1 are computed by one call to ROAX:

ROAX(x,y,thetal,xl,zl)

Finally, A and R are computed by two calls to CAPO:

CAPO(xl,yl,xyl,A)

CAPO(zl,xyl,ONE,R)

Giving the above calculations the form of a procedure, we obtain Example
A. The listing and VAX output are shown.

Using the equations of paragraph 1, which are based on trigonometric
terms, the problem can be solved. However, the solution is not as efficient.
For comparison, Example B is given. The listing and VAX output are given.

10-3

•1

NSWC TR 84-101

Example A:

Lines 20-47: Driving procedure TEST.

Lines 25-29: FORMAT declarations. Three different formats are specified for
use by three WRITE statements. Compare these lines with the
included printed output.

Line 35: WRITE statement which produces first line of output using FMl.

Lines 36-46: Outer loop.

Line 38: WRITE statement which uses FM2 and is printed each time through
the outer loop.

Lines 39-44: Inner loop.

Line 41: Call to procedure NAVIGATE.

Line 42: WRITE statement which uses FK3 and is printed each time through
the inner loop. Note that the actual parameters to be printed
are being converted from radians to degrees in the WRITE
statement.

Lines 50-90: Procedure NAVIGATE defined.

Line 51: The four input parameters are being passed by value.

Lines 52-57: Declarations of input parameters and comments explaining their

use.

Lines 66-90: Body of procedure NAVIGATE.

Lines 80-84: The predefined numerical functions POCA, ROAX, and CAPO are used
to solve the problem for the general case.

Line 92: Compile unit termination.

10-4

NSWC TR 84-101

s 4
4

4
4 4 44 4 4 44 4 4 44 4 4 4 4444 444444 4 4. 4

* SSMMSSMMSSMMSMMSSMMSSMMSSMSSMMSSMx SSMMSMMSSMMSSMMSSMSSMMSSMMSSMMSMMSSMMSSMMS
a.~~ ax~~~aaa xCCCaaaaaaaaaaaaaaaaaa a. axaaxaaKK K KK K KZ ZIK KIIK K KKIIK S KK K ZK KK K KlEIN Kx~

44 4 4 4 4 44Z4 4 4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4

CL S MS MS M-S MS MS MS MS MS MS MS MS MSMS MS MS MS MS MS M S MS MMS MS MS MS MS

4

a.
W

Ilzs

-4 - 0

0 C, P4
: 0 0

40 .4 .

IX 00 N -

0 0 0 * *.
0~ . -1 4- . z 4

- M * : 00 0~ wf4

70 040 00 : w 409 "a Z- Z0 Z-S

*. a- Za. 4 zN S OM

7. In ;n 0 0 0 N S 0W

-D in mt M o .. 2tS O
00~ 4z N~ 0 z - SM 1

xa a SM 0 mJ o M .
0 z- 5 ~
ftZ ZZ 7 J - *. O

aU -0
(A C.a. mM~ 0S .-. . L

x05M -IaC - -S 0. -a -C O M 34W59 ;
- LM* 0 M 0 W4 4ft 0. OM Cz

a~ C4N ft W SS a mM~ 0i A -1-
z z5 WO05 wo o~ 04 -Com **.W-.--

)*-.Ow SME -W a . M.C ..CC . a. a.M t 31WW , -

SM . N . .SCO .- ~t .Z .. .M . .

kUC N.sCQ ZeJS NCa. C.S 4 U-tf 0"N f 00 a. M -J-S--vIVvvJ4 0Ini

............. SM.........S S MS M..S...

Z 24 C~f~ SMSSMSM 42 Z10445

NSWC Th 84-101

c .
z f l

* f f

a d 0g 0 OD CD

*~~~~~ SM * u tu t* SM I-S

aw in in In in to in .z .0 Go4 oc

U 0 * 0*

)C. * 0 z 0 * C

0 * U, in LO id' n(n m SC ao w. UD' t

SM * w * u2 0

71. 7 XU * I L) z
-I. * 0 * C 2 a q* 0 *

5(2L.
am > w 40 * X

0,S C* go z 0, * 0 0 L*L

-1 a* 0 o 0 -W * 0 Sn o co00
LI * j Sj wM 0 w nvi of ,4 P l- CW- o0l4m
zN- LM Sz co SMSM000S

Un ft w U

* In . (~ ~n (Nf .

I 1 0 a Z a. Q 2 *.

ul * > > 0 SM in SM V) 0 Ln w

us . i, 4 In 0 ' 0 S

NSWC Th 84-101

04

X *n

a 4o

0 - . 0 - . U'

ca *2 2 m

4 M V4 .0 C4 0
w~ m o fn 0doi - - - C 4C

0.z z
I~ 0

we InN4
0 ~ l ~ I

w 4 v4 a

a 00 10 10

m4 IL a. at 10 Na .>

- w- No C - a - -wwi

22 4 . c

a a 00 CoLin u

* 0 * *10-7

NSWC Th 84-101

E

0. 4x

0.-

,4.4

-4 w

0M 0 .. : oZ

W Z 3 0

4-4

m0 0- W In I - -0
Uin z IaM 20.X00 -

uw 0 2-iW 2 Q 0C.0 0

- Z 0- Q M O.0A-

-~- 0-S0 0 00
%1 91 - 400 4 ON - 4oa m~m m~ 0 - 46400464W~flM NM

. 44.

SM 2 6~ WU).10-6

NSWC TR 84-101

u-J

P. C

emM

in-

-a z

LZL

00

j

S~ 0-10-9

NSWC TR 84-101

....... 8~8

00000000 06060000 600000000 6000000000 0o00 000000 0 0000

M NN§MMMM m m (9N " H m f, m NN cvCR mm § e 4 e e m99 WC4I " 9 9 " UmmNN4NvC

888 is8 888 is8 is8 888 888 is888 si i si i si i sisi88Issi s sNi i 8I88 sisi sN si s si 888i s si s

*~~ +2~ + +8~ +~~ -
is ~ ~ c -- m~(I NN I-Il f9091 m O If~ v 9 fa l(9 (7 c,9(~ e,~§ 000000000 ooooo ~ o~ 00000000 00000060 600000 06 00000

888 888' 888 8 8' '88'88

o 0 0 0n 0 0
In N a. c4t I

4N 40 44 N

zz Z z22Z2
o 0 0 0 00&. a .a.a .a

- X

10-10

NSWC Th 84-101

888 008 88 88888888 8888888

6 0* o06,0 o0 wo' in *06 0 m y~w .u00600 0

0000 000000006 06000000 06000000

0000 4000000000 000000000 000000000

0 0 0

- I- N

410-11

NSWC TR 84-101

Example B:

Lines 20-47: Driving procedure TEST.

Lines 25-29: FORMAT declarations. Three different formats are specified for
use by three WRITE statements. Compare these lines with the
included printed output.

Line 35: WRITE statement which produces first line of output using FMl.

Lines 36-46: Outer loop.

Line 38: WRITE statement which uses FM2 and is printed each time through

the outer loop.

Lines 39-44: Inner loop.

Line 41: Call to procedure NAVIGATE.

Line 42: WRITE statement which uses FM3 and is printed each time through
the inner loop. Note that the actual parameters to be printed
are being converted from radians to degrees in the WRITE
statement.

Lines 50-103: Procedure NAVIGATE defined.

Line 56: The four input parameters are being passed by reference.

Lines 57-103: Body of procedure NAVIGATE.

Lines 77-81: Using assignment statements to store SINE and COSINE values in
shared memory locations does not reduce execution time for THLL
programs as it does for FORTRAN programs. The THLL compiler
optimizes code such that this type of coding is unnecessary.
However, it facilitates checkout within the procedure if such

assignments are made and the variables are declared OWN.

Line 105: Compile unit termination.

10-12

,, , ,

NSWC Th 84-101

N "NN"" co)m m m v v v w o wn w

MM I

&A
AM

I

4

.9
z Ix

- U,

!. . 0 ;

.4 4

z 0 0 a. N

.4 4

t z

C4 U, 0 4zw CL I
r)- . i - W (- V . - - 1

01 z to e a M A 0 00 IA >
x0 cc (P 0 m4 A- 2 0W

AM AM 00;; t. zN/D

7 w 0- .AO wI OA -
In. 0. a,4. 0 M-M a Z

to) C4U :; e , 00 4 -AN K
wl m 4m A4. 0N .. AM l0 ' ,wCL -

! t* Q* c 0 . UD >0 - w
4m0 4 . CL N.9 Z x 0 vM1

wlg 4 w w cc0 0 =0 0.
4." 0 ADA- .0.

4& m ANow AM N 2 0N a ~
31 z .2 2 !. . W ~ o 4 .0. 01. a~ a 4

wwww ow. -.c~ca w , w .I 1 ! - -

0z 2, Q.A- www AM w. AAU 40U..4

A00 22,0L) AM UDA 0

...AM U'..

C4MC i 1(4 C NO@ , 0 N 4m -mm mm .4A vw vv 4.4o

.~~ ~ ~ .AA) 0 ..J...*.*.* . . I~. . ~ . U, 2

-~ '-' M -~.10-3 ~ 0 .A 402AAUA

NSWC TR 84-101

to 00000wo-Pf- c w am 0 M M MM 0 9 e

Sr* m~mmm4444mmmmmmmwz44mmzmmxm,4mxmmwmwmzm4444WU 4 O4
* 4 4 W W S W W M W S W S W M W M M M S W M W S W M S S S W W W W M W W W
a. xx xxx x xxx x x x x xxx x x x x x

-iz
X

.j
I0

0410

XZ SM.

0l- -..

-W~~ ~ ~ 4wC nax0 ZL

77 R1 0 n N- 0 en
z C4 04. in M4- ec

w1M S o M 0 * 0
00 0J CA a1 -W

0t/ 0 0
A..f v "J .0. E U 4

- w .. II 0 -S

N x 40W C. Z4 ..JZ . gz 0
- .. cc 0n0 0 n . 0

44 w1 w 0 -04 I~ z IX
z0 W* * W 2oJ ~ Z

-- 0W..I1~S 41 41

M0 20M- 44.

ow - - O d........

r -a ft 0 -4 C41to0 0% 0 qlin ft-5 M 0" 0" 040 w M Ne0 ~ ~ Us go 0 No -, 2a s0 ol4 . S . 2 .
In www ft am41 wow a4 MOMMOM ME -e ft Wo

SD 0 M (14 4 UZ /I/S 0
K5 41 .5 N5 1W Z 0 . 2 4

- . . -z

44 - 4-. MU~l~dU~f.-.10-SM14W

NSWC TR 84-101

07

41

atu

cc o

co 0 i t oM i
0 T*m

In Ut T V t
* C U U* Uw

N * a a zJ

u a - . -

C.C -j (N* ,

Z=t CC 0 2 - J M 0.

0.. *z .4 z 09 a. .C * i * C

414C 140**

* 9 > a. > > > Uy

x 0 , 0 a 0 C a 0 C a lz m a cc in 4
*U oU 0 U 0 0 U002

C. N U I UtU 9 *N U10t 1t

NSWC Th 84-101

4o

* .

NO to
* .4 .;

0. 4.

21 it.44

C1 0' 6

to to 0 0 0'

ev W I - M .4 03

tio * ~ n W)I C') omm n I.- tn to to. to

*~~~~~L LA4 V)6 'A ~6 .4 44 .

Ix cca a .4

in C4 0A N*n '

6~~L 0 &A 0*

a~~ IL C4 4
0.~L LIM. 4 ') * 0

(1 v. v W W2 o04 ot2'0 rc

2. ! .4. ! z

Cin~~i a a4a*

.4. 1mt
it~~s * 2 * I * I * La

faO It0* 0 0
aX40 0 4 0

~~nn 4. C) C.

10-16

NSWC TR 84-101

IA

to

x

0.

cc

0.

00AA

74 Uciw wv .u

Ozi

-4 W C..

40 z 0V

0

a -J
(Of I
-- ou ---.- -

WY UIUO 440417

NSWC TR 84-101

7- -7- -- - - -
000000000 000000000 000000000 000000000 000000000 00000

0 . . .

00000o060 000000000 00600000 60000000 0660o66066 00000

Z 2z.....444........... 2Z.-...

C.c*000000C900000 0000ei0000~o??00000(*0000O0000000090000C0w00000

0t 0 I i

0 00 0 0a
CL a. ILt

0 z I- I- U

4 4 4 104 18

NSWC TR 84-101

........ ... 222
0II'-flx 8a002 Sw 010 minnm v v to n a000o000000

0000 600000000 0000006000 06000000

888 H HH~iN M iMi MiM '8 8ii N S" 8M Mi i M M M M "8 N8i M M M M 8i M
. w w w wI.,0 0 i- 0 I 0~0 Q +I~ 0+ *00 00 + * + 0I.

0060*000oooo6ooo* 000006000 0000000

0000"v000000000e'000000000N000000000

0 t

V10-1

NSWC TR 84-101

CHAPTER 11

REFERENCES

1. The THLL Group, K53, BP TRICOMP User's Guide, NSWC TR 84-93, July
1984.

2. Jack A. Gaines, Jr., MC TRICOMP User's Guide, NSWC TR 84-95, July

1984.

3. John J. Zaloudek, VAX TRICOMP User's Guide, NSWC TR 84-97, July 1984.

4. NAVSEA OD 55658, TRIDENT-II Fire Control System Mk 98 Mod 1 Support
Software Programming Standards and Guidelines, Nov 1983.

5. NAVSEA OD 45601, Vol 2, Part 1, TRIDENT-I and TRIDENT-I Backfit
Fire Control Software Real Time Operating System MONITOR Design
Disclosure Document, Nov 1976.

6. Hartmut G. Huber, TRILOAD Reference Manual, 1984. (To be published)

7. Hughes Aircraft Company, TRIDENT Basic Processor Programmers
Reference Manual, Jul 1974.

j 11-1 i

NSWC TR 84-101

APPENDIX A

CHARACTER SETS

A.1 'THLL CHARACTER SET

The THLL character set consists of the following ASCII subset:

Uppercase letters A-Z

Numerals 0-9

The following special characters:

Character Name Character Name

Space. Period
Exclamation point / Slash
Quotation mark : Colon

Number sign Semicolon
$ Dollar sign <> Angle brackets
% Percent sign W Equal sign
& Ampersand ? Question mark
I Apostrophe @ At sign
0 Parentheses] Square brackets
* Asterisk Backslash
+ Plus sign A Circumflex

Comma Underline
- Minus sign

There is no plus or minus sign (+) defined in ASCII and the circumflex
(A) is used to represent it. The TDCC devices, KBDSS, CPRINT, and SPRINT,

display the circumflex as the + character.

Not included in the THLL character set are the lowercase letters (codes
X'60' - X'7E') and the nonprintable characters (codes X'00' - X'lF' and
X'7E'). When these characters are used in a THLL compile unit they are
treated as follows:

A-1

NSWC TR 84-101

A. Lowercase letters are treated in a machine-dependent manner:

BP, MC68000: lowercase letters are converted to uppercase letters
(code X'40' - X'5E') except when they appear in comments or remarks.

VAX: lowercase letters are converted to uppercase letters (code X'40'
- X'5E') except when they appear in THLL strings or in comments or
remarks.

B. Nonprintable characters are converted to question marks (?).

A-2

NSWC TR 84-101

A.2 ASCII CHARACTER SET

The table below represents the ASCII character set. At the top of the
table are hexadecimal digits (0 to 7), and to the left of the table are
hexadecimal digits (0 to F). To determine the hexadecimal value of an ASCII
character, use the hexadecimal digit that corresponds to the row in the
"units" position, and use the hexadecimal digit that corresponds to the column
in the "16's" position. For example, the value of the character representing
the equal sign is 3D.

TABLE A-1. ASCII CHARACTER SET

0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P p
1 SOH DC1 1 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK Z 5 E U e u
6 ACK SYN & 6 F V f v
7 BEL ETB ' 7 G W 9 w
8 BS CAN (8 H X h x
9 HT EM) 9 1 Y i y
A LF SUB * J Z j z
B VT ESC + K k

C FF FS , L 1
D CR GS - - a] a }
E SO RS > N A n
F SI US / ? 0 o DEL

NUL Null DLE Data Link Escape
SOH Start of Heading DC1 Device Control 1
STX Start of Text DC2 Device Control 2
ETX End of Text DC3 Device Control 3
EOT End of Transmission DC4 Device Control 4
ENQ Enquiry NAK Negative Acknowledge
ACK Acknowledge SYN Synchronous Idle
BEL Bell ETB End of Transmission Block
BS Backspace CAN Cancel
HT Horizontal Tabulation EM End of Medium
LF Line Feed SUB Substitute
1T Vertical Tab ESC Escape
FF Form Feed FS File Separator
CR Carriage Return GS Group Separator
SO Shift Out RS Record Separator
SI Shift In US Unit Separator
SP Space DEL Delete

A-3

|-

NSWC TR 84-101

APPENDIX B

TYPE MATRICES

B.1 INTRODUCTION

Every expression has a type. The meaning of the six different types
provided by THLL is as follows:

HALF - an integer quantity of a machine-dependent size

BP: 16-bit quantity if the expression is a subscripted array
variable, 32-bit quantity otherwise;

MC68000: 16-bit quantity; and

VAX: 32-bit quantity.

INTEGER - a 32-bit integer quantity

DOUBLE - a 64-bit integer quantity

REAL - a floating point quantity

POINTER - an address quantity

ALPHA - a character string quantity

The type of an expression is defined as follows:

Constants have the type as described in Section 2.7, variables and
function values have the type as indicated in their declarations. When
expressions are used as operands for some operator, the value of the resulting
expression is determined from the type matrices listed below. Row headings
indicate the type of the first operand, column headings indicate the type of
the second operand. The operator is specified by its name. The intersection
of the appropriate row and column indicates the type of the resulting
expression. An asterisk in an element indicates an undefined or meaningless
operation.

B-1

'I'1 _l . - ,. ..

NSWC TR 84-101

B.2 UNARY PLUS, UNARY MINUS

H H H H

I I I I

D D D D

R R R R

P P P *

B.3 ADDITION, SUBTRACTION

+ H I D R P H I D R P

H H I D R P H H I D R *

I I I D R P I I I D R *

D D D D R P D D D D R *

R R R R R * R R R R R *

P P P P * * P P P P * I

NOTE

For the case P-P, both pointers should have
values in the OWN data area or in the same group

of shared variables.

B-2

'I-

NSWC TR 84-101

B.4 MULTIPLICATION, DIVISION

H I D R / H I D R

H H I D R H H I D R

I I I D R I I I D R

D D D D R D D D D R

R R R R R R R R R R

I

B.5 MODULO AND BIT OPERATORS

MOD
ORB
ANDB

NOTB XORB H I D

H H H H I D

I I I I I D

D D D D D D

tI.
NOTE

The MOD operator cannot be applied to real
operands (type R). The operation is defined
algebraically as follows:

V - A MOD B

implies A - Q*B+V

where ABS(V) < ABS(B)

and SIGN(V) SIGN(A)

I

NSWC TR 84-101

B.6 RELATIONAL OPERATORS

LES
LEQ
GRT EQL
GEQ H I D R P NEQ H I D R P A

H I I I I * H I I I I * *

I I I I I * I I I I I * *

D I I I I * D I I I I * *

R I I I I * R I I I I * *

P * * * * I P * * * * I *

A * * * * * IAi
The integer result is represented by X'O0000000' for FALSE and

X'FFFFFFFF' for TRUE.

NOTES

1. Zero, representing the null pointer, can be compared with pointer
values using EQL, NEQ, LES, LEQ, GRT, and GEQ.

2. ALPHA variables can be compared for equality. Two strings are
considered equal if they are of equal length and the characters match
one-for-one.

3. An ALPHA string can be compared to a double variable. Only the first
eight characters of the string are considered. The string is
considered left-justified and blank-filled. An ALPHA variable cannot
be compared to a double variable.

B-4

I

NSWC TR 84-101

B.7 LOGICAL OPERATORS

AND
OR

NOT XOR H I D

H I H I I I

I I I I I I

D I D I I I

A zero argument is interpreted as false; a nonzero argument is true.
The value returned for a logical operation is X'00000000' for FALSE and
X'FFFFFFFF' for TRUE.

B.8 LOC OPERATOR

LOC

H P

I P

D P

R P

P P

A P

8-5

f

NSWC TR 84-101

B.9 LOCA OPERATOR

LOCA

H I

I I

D I

R I

P I

A I

NOTE

The executable statements, LOC and LOCA cannot
operate on label, switch, common, component,
device, or procedure identifiers; only simple,
subscripted, or component variables or format
identifiers may be used. The LOC of a procedure
identifier is allowed in certain cases in
presets. The LOC of a format is the address of
the format, not the address of the format
header. The LOC of an ALPHA is the address of
the ALPHA header. The LOC of a procedure
identifier is allowed only as the first argument
in the PRESET functions LINKWORD and INITWORD.

B-6

I.-- ,-

NSWC TR 84-101

B.10 EXPONENTIATION

** H I D R

H H I R R

I H I R R

D R R R R

R R R R R

The operator ** is implemented as follows:

X**Y - 1 if Y is 0.

X**Y - X*(X**(Y-I)) if Y > 0 and Y is an integer.

X**Y - (l/X)*((X)**(Y+l)) if Y < 0 and Y is an integer
and X not equal 0.

X**Y - EXP(Y*LN(X)) if Y is real and X > 0.

X**Y - undefined otherwise;
i.e., X - 0, Y < 0, Y is an integer,
or X < 0 and Y is real.

Effect: an illegal operand fault is generated
on the BP.

NOTE

Double operands are converted to real. A
warning message is issued by the compiler to
consider the significance loss. A double value
whose absolute value is greater than a
machine-dependent maximum size yields inaccurate
results.

B-7

NSWC TR 84-101

B.11 ASSIGNMENT

The type of the assignment expression is the type of the unconverted
right-side expression.

If the assignment is legal then the value assigned to the left-side
variable is the value of the right-side expression converted to the type of
the left-side variable.

The following table summarizes the conversion rules for the assignment
expression.

H I D R P A

H H H H H * *

I I I I I * *

D D D D * *

R R R R R * *

P * * * * P *

A * * * * * A

NOTES

1. An exception is made for the special case of initializing or setting
a pointer to the integer zero (0). The left side may be of pointer
type and the right side the integer zero.

2. An exception is made for the case of a double variable on the left
side and an ALPHA string on the right side. Only an ALPHA string may
be used, not an ALPHA variable. The double variable contains only
the first eight characters of the string, left-justified and
blank-filled. The order in which the characters are stored in the
double variable is machine-dependent.

B-8 LI

NSWC TR 84-101

APPENDIX C

TRICOMP COMPILER DIRECTIVES

C.A GENERAL DESCRIPTION

The compiler directives are used to communicate various options to the
compiler and to control the format of the printable listing.

The compiler enters the directive mode when either a \ or \\ is detected.
The directive mode is terminated when the end of an input line has been
detected. The \\ allows the active line to appear on the printed listing.
The \ suppresses printing of the active input line. The line count indicates
that a line was suppressed. The \ and \\ have no effect in a comment or
SYNONYM definition. The \ or can appear after any THLL item except FINIS.
If during a synonym expansion a or \\ occurs, it causes the directive mode
to be entered. The remainder of the synonym (even if on different lines in
the synonym definition) and the remainder of the input line are considered to
be directives. A \ detected in a synonym expansion causes that line to be
suppressed. The following synonym definition allows lines containing \ to be
printed:

SYNONYM \ - - -

In a similar manner, all directives may be suppressed in the listing.

More than one directive may be included on one input line. The
directives have the following general form:

KEY D Y

where

KEY is a keyword identifier.

D is an optional series (possibly empty) of THLL items that do not

match the THLL item Y required by the KEY.

Y is either an identifier, string, number, or signed number as
required by the KEY. Some directives do not require a Y.

C-1

NSWC TR 84-101

Examples:

A. \LINE-l

B. \ TITLE - #'NAME OF 1Y TASK'

C. \\ TITLE - #'',PAGE

The first example causes the input lines to be double spaced. The second
example puts a title on each page. The third example removes the user's title
and causes a page to be ejected. Only the third example is printed. The =
and comma are oitional.

The KEY used in the directives is just a predefined identifier which has
no special meaning when not in the directive mode; therefore, the KEY words
are not reserved words.

When the directive mode is entered, only a KEY or end of line is
recognized. After a KEY is recognized, only the Y or end of line is
recognized. If the Y is a string, processing continues until the string is
terminated.- Therefore, the user should be careful to terminate the string.
Failure to do so can cause subsequent source lines to be incorporated into the
string, since string processing does not terminate at the end of the line.
The directive mode is restarted after a directive has been completely
recognized.

C.2 DIRECTIVE NOTATION

The following notation is used in the description of directives:

N- integer number. It may be a binary, octal, decimal or hexadecimal
integer constant. The number must not be real or large enough to be
considered double. An illegal number causes that directive
recognition to be aborted and the directive mode to be restarted.
All signs are also ignored.

SN - is -n integer number with optional sign. (See the description of N
above.)

S -is a string. If the string is continued on the next line, the
directive is ignored and directive processing is terminated.

ID - is an identifier. The identifiers used as KEYs may also be used
without causing confusion. A new directive is not started by using
KEY as an identifier.

Except as noted, all directives are valid within one compile unit.

C-2

NSWC TR 84-101

C.3 LISTING DIRECTIVES

1. ATAB SN - Adjust the TAB number by SN. If SN is negative, the tab
moves to the left. The tab number does not go below 0 or above 48. Tab
numbers less than 0 are replaced by 0; tab numbers greater than 48 are
remembered but limited to 48.

2. HEADER - Restore the standard TRICOMP header at the top of each page.
If a directive title line was being printed, it must be redefined because the
page number of the last page without a header has been placed in that line.
Both the standard TRICOMP header and title line would contain page numbers.
HEADER is default.

3. LINE N - Print N blank lines after each printable line. Spacing does
not pass the end of page. The next printable line appears at the top of the
next page. Default is 0.

4. MLINE N - Print a maximum of N lines to a page. Low value of N is
limited to 10. There is no upper limit value of N. Large values of N have
the effect of suppressing page headers. The standard TRICOMP header,
directive title line (if it exists), and the top blank line are not counted
towards this line count. Default is 56.

5. NOHEADER - Suppress the standard TRICOMP header at the top of each
page. If no directive title line is specified, only the home paper carriage
control and page number is printed for each new page. Page number is added to
the title line if it does exist, and the title line is first on the page.

6. PAGE - Immediately home paper. If this directive is printed, it
would appear on the new page.

7. RSIDE N - Listing width option. Default is nonzero.

N - 0: The right side of the listing is suppressed. This is helpful
if a listing is to be displayed on an 80 column terminal.

N 0: Restore the right side of the listing.

The right side of the listing includes columns 73 through 90 of the input line
image and the compile unit name and line number.

8. SPACE N - Print N blank lines before the next printable line. If the
next printable line comes from an insert that is not being printed, then the
directive is ignored. Spacing does not pass the end of page. Default is 0.

9. TAB N - Move the line image right to the Nth column. The integer
number is limited to 48. Default is 0.

10. TITLE S or TITLE -S - Print the string S at the top of each page
just below the standard TRICOMP header. If the minus (-) is used before the
string, then the string begins in column 1 and its first character is
interpreted as a carriage control character. Otherwise, the string is printed

C-3

NSWC TR 84-101

starting in column 21. If this directive is defined in a synonym and then
expanded in the S position, a maximum of 130 characters including the carriage
control character can be handled by the compiler. Longer strings are
truncated. If the standard TRICOMP header is suppressed, columns 121 through
130 are used to specify the page number. An empty string suppresses the
directive title line. Default is no title line.

C.4 COMPILER DIRECTIVES

1. ABORT - This affects the setting of $SEVERITY at the end of TRICOMP
execution (see Section G.4). If the /ALL qualifier is selected on the TRICOMP
command, ABORT also has the following action. The compiler terminates the job
stream if this or any of the remaining input compile units has a fatal error.
All of the input THLL compile units are compiled, but after the last compile
unit, TRICOMP aborts if any of the compile units has a fatal error. The
directive does not cause an abort if only an earlier compile unit has a fatal
error. Default is no abort.

2. BIN S - User Library name. Default is NULL. Used for configuration
data. If the string contains more than eight characters, it is truncated to
eight characters. This directive is meaningful only for the BP.

3. BOUNDS N - Boundcheck option. Default is nonzero.

N - 0: No runtime check of array subscripts is performed.

N 0: Runtime array bounds check. Default.

This directive alters the bounds checking at that point in the compile unit.

4. CGOPTS N - Compiler systems use. Default is 0.

5. CODEFILE ID - The default file name for the output to the assembler
is the base file name of the input source file with the extension .SRC (BP),
.MAR (VAX), or .MCS (MC68000). This directive changes the output file name to
<ID>.DAT. Only the last file name specified by a CODEFILE directive is used
for the current compile unit. The code for a single compile unit cannot be
sent to more than one file.

6. CONBR N - Constant protection area base register assignment option.
Default is 5. The specified base register with displacement 0 is used as the
origin of the constant protection area (read only access with indirection -
protection code 5). Base registers must be between 1 and 15 inclusive. This
directive is meaningful only for the BP.

7. CRET - Compile as a GDDF creating compile unit. The actual GDDF is
created by TRIASSM. This directive is meaningful only for the BP.

C-4

NSWC TR 84-101

8. DEBUG N - Compiler systems use. Default is 0.

9. DSS N - D-stack size. Default is 1000. This option is used when the

D-stack has overflowed the default size and the programmer has received such

instruction through an error message on a previous compilation.

10. FSL N - Format size limit. Default is 512. This option should be
used if error number 1*7*6 is generated by TRICOMP. In order for this

directive to have an effect, it must occur before the first format

declaration.

11. GDDF - Compile as a compile unit that is to be assembled using a
GDDF. This directive is meaningful only for the BP.

12. HEAD N - Head-stack size. Default is 400. This option is used when
the head-stack has overflowed the default size and the programmer has received
such instruction through an error message on a previous compilation.

13. ICF N - ICF list size. Default is 10000. This option is used when
the ICF has overflowed the default size and the programmer has received such
instruction through an error message on a previous compilation.

14. ICFMIN N - The minimum number of ICF items which is written to a

temporary disk file when paging the ICF. Default is 50.

15. ICFPAGE N - ICF paging option. Default is nonzero.

N ' 0: Do not write a portion of ICF to a temporary disk file,

thereby keeping the entire ICF in memory.

N 0: Write a portion of the ICF to a temporary disk file as it is
being generated, the minimum block written is specified in
ICFMIN. Whenever a portion of the ICF is written, memory is
freed for reuse. Default.

16. IDSS N - Maximum number of identifiers. Default is 1500. This
option is used when the number of identifiers has overflowed the default size
and the programmer has received such instruction through an error message on a
previous compilation. In order for this directive to have an effect, it must
occur before the first user-defined block is opened.

17. INSBR N - Instruction protection area base register assignment
option. Default is 1. The specified base register with displacement 0 is
used as the origin of the instruction protection area (execute access with no
indirection - protection code 6). Base registers must be between 1 and 15
inclusive. This directive is meaningful only for the BP.

18. LAB N - Compiler generated label table size. Default is 2000. This
option is used when the compiler generated label table has overflowed the
default size and the programmer has received such instruction through an error
message on a previous compilation.

C-5

NSWC TR 84-101

19. LIST N - List option. Default is 1.

N - 0: No listing except for errors and compile times.

N - 1: List only the source input file, errors, cross reference and

compile times. Default.

N - 2: Also list the insert files in addition to the N - 1 option.

20. MAIN ID - This specifies the procedure which is the program entry
point. It must be placed in the compile unit containing the procedure which
is being declared the MAIN procedure. There can be only one MAIN directive
per program. This directive is meaningful only for the VAX and MC68000.

21. MAXBLK N - Maximum number of blocks. Default is 400. This option
is used when the number of blocks has overflowed the default size and the
programmer has received such instruction through an error message on a
previous compilation. In order for this directive to have an effect, it must
occur before the first user-defined block.

22. NOCODE - No code is to be generated. Pass 3 and pass 4 are
suppressed. This is equivalent to the PASS-2 directive.

23. NOSCHEMA - Do not generate schema data (BP only) or schema comments.
Default for VAX and MC68000.

24. NOSKIP - This turns off the compiler skip mode. The SKPSTART and
SKPEND directives are not honored. Default.

25. OPT N - Optimization option. Default is nonzero. Any THLL constant
number can be used on the directive line.

N = 0: No optimization.

N 0: Optimization is done. Default.

This directive causes the optimization to be altered at that point in the

compile unit.

26. OWNBR N - Own protection area base register assignment option.
Default is 9. The specified base register with displacement 0 is used as the
origin of the own protection area (read/write access with indirection -

protection code 3). Base registers must be between I and 15 inclusive. This
directive is meaningful only for the BP.

27. PASS N - Number of passes to be run. Default is 5. Pass 5 is
always run.

N = 1, 2, 3, 4: Execute N passes of the compiler, and then pass 5.

N - 5: Execute all passes.

C-6

I. - ,,- L.J ..

NSWC TR 84-101-

28. PRIV - Compile for privileged mode. This causes only the current
compile unit to be assembled in PRIV mode. This directive is meaningful only
for the BP.

29. RSS N - R-stack size. Default is 1000. This option is used when
the R-stack has overflowed the default size and the programme- has received
such instruction through an error message on a previous compilation.

30. SCANMAX N - The maximum number of items across which SCANBACK scans
in order to optimize generated code. Default is ICF/2.

31. SCHEMA - Generate schema data (BP only) and schema comments in the
generated assembly code. Default for BP.

32. SKIP - This turns on the skip mode of the compiler. All input
between the SKPSTART and SKPEND directives are not processed by the compiler.
The SKPSTART directive must occur after the SKIP directive. Care must be
taken because skipping can go beyond compile unit boundaries.

33. SKPEND - This terminates the skipping of the input text. It only
has an effect if skipping is in progress. It can come from a synonym
expansion. It cannot come from an insert file that is not already active.
(Insert declarations are skipped.)

34. SKPSTART - If the skip mode is active, then start skipping all input
until a SKPEND directive. The SKPEND directive is the only directive that is
honored.

35. SYN N - Synonym table size. Default is 1500. This option is used
when the synonym table has overflowed the default size and the programmer has
received such instruction through an error message on a previous compilation.
In order for this directive to have an effect, it must occur before the first
synonym definition.

36. TMPMAX N - Maximum number of temporaries. Default is 48. This
option is used whenever a compile unit with a large stack frame size has
insufficient room for temporary storage on the runtime stack and the
programmer has received instruction to increase the number of temporaries
through an error message on a previous compilation.

37. XREF N - This controls the level of cross reference. This directive
cannot be used after the first user-defined symbol is encountered. Default is
4.

R - 0: No symbol table or cross reference table.

R - 1: Used system symbols and used user-defined symbols. Global
symbols are included in the output. No cross reference of
those symbols.

R 2: Used system symbols and all user-defined symbols. No cross
reference of those symbols.

C-7

< 1 U! i_

NSWC TR 84-101

R - 3: Option 1 plus cross reference of those symbols.

R - 4: Option 2 plus cross reference of those symbols. Default.

R - 5: All system symbols and all user-defined symbols. Plus cross
reference of those symbols.

C-

C-

NSWC TR 84-101

APPENDIX D

TRICOMP COMPILER MESSAGES

D.l INTRODUCTION

There are three classes of messages generated by the TRICOMP compiler,
messages output to the user's terminal or batch log, informative messages and
error messages. The messages output to the user's terminal or batch log
indicate which compiler was invoked and the overall status of the compilation.
The informative messages give information about the time used by each pass of
the compiler and the overall success of the compilation. Error messages
indicate problems found in the input text and the corrective measure (if any)
attempted by the compiler. Additionally, BP TRICOMP lists the assembled
object module (in binary mode) and BP related statistics.

D.2 MESSAGES OUTPUT TO THE USER'S TERMINAL OR BATCH LOG

TRICOMP uses SYSSOUTPUT to provide informative messages about the
progress of a compilation. Each invocation results in three TRICOMP messages
written to SYS$OUTPUT.

The first message is the following:

BEGIN X TRICOMP

where X is VAX, BP, or MC which indicates target machine.

The second message may be one of the following:

1. NORMAL COMPILATION X - indicates that the compile unit X was compiled
without errors.

2. NORMAL COMPILATION X ERRORS - Y - indicates that the compile unit X
was compiled with Y errors. None of the errors were fatal.

3. ABNORMAL COMPILATION X ERRORS - Y - indicates that the compile unit X
was compiled with Y errors. At least one of the errors was fatal.

4. %TRICOMP-F-OPENIN, error opening X as input - indicates that the file
specification X could not be opened for input.

D-1

NSWC TR 84-101

5. %TRICOMP-F-OPENOUT, error opening X as output - indicates that the
file specification X could not be opened for output.

The third message is the following:

END X TRICOMP

where X is VAX, BP, or MC which indicates target machine.

Alternatively, if there is an error in the TRICOMP command, VMS emits a
%DCL-W- error message.

D.3 INFORMATIVE MESSAGES

PARSE COMPLETED NORMALLY appears just after the source listing. This
message indicates that pass 2 was able to successfully recognize the
executable statements in the compile unit. If any statements were incorrect,
the pass 2 parser was able to recover enough in order to get to the end of the
compile unit. The error messages should indicate where the statement
structure is incorrect.

NORMAL COMPILATION TERMINATION or ABNORMAL COMPILATION TERMINATION
appears at the end of the compilation listing. Abnormal termination indicates
that an unrecoverable (fatal) error occurred and no object output is
available. Normal termination means that object output is generated. The
compiler output may contain errors if errors existed in the THLL input to the
compiler. The error messages should indicate if there are THLL errors.

COMPILATION TIME FOR PASS X - <number> CENTISECONDS indicates the central
processor time used by each pass in hundredths of seconds. Pass 1 scans the
THLL compile unit, character by character, and concatenates the characters
into items which are then interpreted as numbers, identifiers, and reserved
words. Data declarations are also interpreted during pass 1. Pass 2
interprets THLL statements and expressions and performs the optimizations
requested by the users. Passes 3 and 4 generate and format the object code
output. Error messages and cross reference information are processed by pass
5.

LENGTH OF INTERMEDIATE CODE FILE - HHHH (HEX), NNNNN (DECIMAL) appears at
the end of the listing of a compile unit. HHHH is the hexadecimal number
indicating the number of entries needed for communication between pass 2 and
pass 3 with NNNNN indicating the decimal equivalent. If the number of entries
exceeds the default size then it must be increased via the ICF directive (see
TRICOMP Compiler Directives, Appendix C).

MAXIMUM IDSS USED - HHHH (HEX), NNNNN (DECIMAL) is printed at the end of
a THLL compile unit. HHHH is the hexadecimal number indicating the maximum
number of user defined symbols or compiler predefined symbols. NNNNN is the
decimal equivalent. If the number of symbols exceeds the default size then it

D-2

I . -,

NSWC TR 84-101

must be increased via the IDSS directive (see TRICOMP Compiler Directives,
Appendix C).

MAXIMUM SYN USED - HHHH (HEX), NNNNN (DECIMAL) is printed at the end of a
THLL compile unit. HHHH is the hexadecimal number indicating the maximum
number of items in a synonym right side. NNNNN is the decimal equivalent. If
the maximum synonym length exceeds the default size then it must be increased
via the SYN directive (see TRICOMP Compiler Directives, Appendix C).

MAXIMUM LAB USED - HHHH (HEX), NNNNN (DECIMAL) is printed at the end of a
THLL compile unit. HHHH is the hexadecimal number indicating the maximum
number of compiler generated labels. NNNNN is the decimal equivalent. If the
number of compiler generated labels exceeds the default size then it must be
increased via the LAB directive (see TRICOMP Compiler Directives, Appendix C).

MAXIMUM ICF USED - HHHH (HEX), NNNNN (DECIMAL) is printed at the end of a
THLL compile unit. HHHH is the hexadecimal number indicating the maximum
number of ICF entries which were kept in memory at one time. NNNNN is the
decimal equivalent. If the number of maximum ICF utilization exceeds the
default size then it must be increased via the ICF directive (see TRICOMP
Compiler Directives, Appendix C). The effect of ICF paging can be seen by
comparing this number to the length of the intermediate code file as described
above.

A TWO LINE PAGE HEADER appears at the top of every TRICOMP page. The
compile unit name is at the left of line 1 and mm/dd/yy and hh:=m:ss are at
the left-of line 2 and indicate the date and time when TRICOMP began the
current compilation. This is the date and time which appears in the schema
and configuration data for the current compile unit. Also, the site
identification and the TRICOMP revision and change number follow the compiled
date and time. The formation date and time of the compiler, its name, its
revision and change number, and a three digit page number fill out the
remainder of line 1. The input-file-spec and its revision date and time fill

out the remainder of line 2.

EOF DETECTED is normally printed when the /ALL qualifier is specified in
the TRICOMP command. It appears after the compilation of the last compile
unit in the input file. If an end of file occurs before the end of a compile
unit, a fatal error is reported and the compilation is immediately terminated.

D.4 ERROR MESSAGES

Error messages are printed immediately before the cross reference
information. Each error message starts with the following line:

** ERROR NUMBER P*MM*EE IN LINE NN OF FILE RRRRR(FFFFF).

where

D-3

NSWC TR 84-101

P - is the compiler pass number 1, 2, 3, or 4.

MM - is the first half of the error number.

EE - is the second half of the error number.

NN - is the decimal line number with the file specified. NN appears
as the right-most number on the source listing.

RRRRR - is the compile unit name or insert file name from an insert
declaration. This name is printed just to the left of NN on
the source listing.

FFFFF - is the file name specified on the TRICOMP command or the
directory name from an insert declaration.

If there are more than 100 error messages, the following line is printed

before the error messages:

<number> ERRORS DETECTED. ONLY THE FIRST 100 WILL BE PRINTED.

A short explanation of the error number is printed on the lines following
the error number line. If there is a symbol in error or missing and a
recovery attempt is made to insert a symbol, the symbol is enclosed by a pair
of single quotes. If the letter P appears in the error number, the error can
occur in any pass.

P*50*l. INTERNAL COMPILER ERROR - ILLEGAL NUMBER SIZE <number>. Internal

problem in the compiler. Report this error to the THLL Compiler Group.

1*2*4. ILLEGAL ITEM '<item>' FOUND IN STATEMENT. ITEM DISCARDED. Illegal
item found in the input compile unit. An unimplemented special character
was found within a statement. The most likely cause is a typing error or
a premature end to a COMMENT. (A ; cannot appear anywhere in the
COMMENT. It causes the immediate termination of the comment.)
Nonprintable characters are converted to question marks (?).

1*2*5. '<number>' CAUSES A NUMERIC OVERFLOW OR UNDERFLOW. A number has been
specified which cannot be represented in the target computer.

1*2*6. '<number>' CAUSES MANTISSA TRUNCATION. The number specified is too
large to be represented in the target computer. TRICOMP attempts to
represent the number as accurately as possible.

1*3*6. ILLEGAL ITEM '<item>' FOUND IN DECLARATION. ITEM DISCARDED. Illegal
item found in a declaration. The item is probably a reserved word used
only in expressions or statements.

D-4

iI

NSWC TR 84-101

1*3*7. ILLEGAL ITEM '<item>' BEFORE 'BEGIN'. ITEM DISCARDED. The item
appears before the first BEGIN in a compile unit. Only identifiers can
be accepted as a compile unit name before that BEGIN.

1*3*8. ILLEGAL ITEM '<item>' FOUND OUTSIDE DECLARATION. ITEM DISCARDED. An
item that belongs within a data declaration (such as S, ICL, CPRINT,
etc.) has occurred outside a data declaration. An incorrect comment
could cause this error.

1*3*9. COMPILE UNIT NAME MISSING <name> ASSUMED. A compile unit name was not
specified and as a result the input file name has been used as the
compile unit name. The cuname indicated in the message becomes the
cuname used in the schema and configuration data.

1*3*10. COMPILE UNIT '<name>' IGNORED. SPECIAL CHARACTERS ARE NOT ALLOWED IN
A COMPILE UNIT NAME. A period or other special character as any one of
the first eight characters in the compile unit name causes this error
message. The generated code for this compile unit may not have the
correct compile unit name.

1*4*7. FATAL ERROR. INCREASE SIZE OF PASS I PARSER STACK. A stack in the
pass 1 parser has overflowed. Report this error to the THLL Compiler
Group.

1*4*8. PASS 1 PARSER ERROR. FATAL ERROR. Pass 1 parser error. Report this
error to the THLL Compiler Group.

1*4*9. EOF DETECTED WITHIN PROGRAM. FATAL ERROR. End of file detected
within a compile unit. This is a fatal error and immediately terminates
the compilation in pass 1. A missing FINIS can cause this error.

1*4*10. ILLEGAL ITEM '<item>' FOUND IN DECLARATION. ITEM DISCARDED. An item
which can appear in a declaration appears in the wrong context, and the
item was rejected by the error recovery algorithm and discarded.

1*4*11. NIL STRING INSERTED BEFORE '<item>' IN AN ATTEMPT TO CONTINUE. A nil
string has been inserted into a declaration. This occurs when a required
string is missing in a declaration and the error recovery algorithm
inserted the nil string so that the pass 1 parser could continue.

1*4*12. NUMBER '0' INSERTED BEFORE '<item>' IN AN ATTEMPT TO CONTINUE. The
integer 0 (zero) is inserted into a declaration. This occurs when a
required number is missing in a declaration and the error recovery
algorithm inserted the number 0 so that the pass 1 parser could continue.
This message is also used when a format item (see Section 8.2) is needed
in a format declaration.

1*4*13. '<item>' INSERTED BEFORE '<item>' IN AN ATTEMPT TO CONTINUE. An item
has been inserted into a declaration. The declaration was correct up to
the point indicated, but the next item was not acceptable. The pass 1
error recovery algorithm has selected an item to insert before the next
item so that the parser could attempt to continue. The error recovery

D-5

NSWC TR 84-101

algorithm is a short general algorithm that considers a few special
cases. Therefore, the generated symbol may not be the best choice for a
particular case.

1*4*14. '<item>' DISCARDED IN AN ATTEMPT TO CONTINUE. An item has been
discarded. The item was thrown out by the error recovery algorithm while
backing up over a previously accepted item.

1*5*1. NEGATIVE ARGUMENT INVALID FOR <name> DIRECTIVE. The specified
directive has been given a negative argument field when only a positive
value is allowed. The argument is made positive.

1*5*2. INVALID <name> DIRECTIVE ARGUMENT REPLACED BY 0. An illegal numeric
argument field has been specified for the named directive. The argument
field is replaced by zero and the directive honored.

1*5*3. TAB COLUMN NEGATIVE. COLUMN 0 ASSUMED. The ATAB directive argument
has resulted in a negative tab column. Column 0 now becomes the active
tab column from this point on.

1*5*4. MLINE DIRECTIVE ARGUMENT TOO SMALL. LINE COUNT ASSUMED TO BE 10. An
attempt has been made via the MLINEN directive to limit the number of
lines per page below the accepted minimum. The appropriate corrective
action is indicated.

1*5*5. INVALID <name> DIRECTIVE ARGUMENT IGNORED. An invalid argument has
been specified for the named directive. The directive is ignored.

1*5*6. INVALID XREF DIRECTIVE ARGUMENT OR FIRST SYMBOL ALREADY ENCOUNTERED.
ARGUMENT IGNORED. TRICOMP requires that the XREF directive be specified
before the user symbol is supplied. Either this rule was violated or an
invalid argument was presented to the XREF directive. In either case,
the directive is ignored.

*5*7. INVALID FSL DIRECTIVE ARGUMENT OR FORMAT STATEMENT ALREADY

ENCOUNTERED. ARGUMENT IGNORED. TRICOMP requires that the FSL directive
be specified before the first format statement is encountered. Either
this rule was violated or an invalid argument was presented to the FSL
directive. In either case, the directive is ignored.

1*5*8. INVALID SYN DIRECTIVE ARGUMENT OR FIRST SYNONYM ALREADY ENCOUNTERED.
TRICOMP requires that the directive be specified before the first synonym
is encountered. Either this rule was violated or an invalid argument was
presented to the SYN directive. In either case, the directive is
ignore*.

1*5*9. INVALID <name> DIRECTIVE ARGUMENT OR FIRST BLOCK ALREADY OPENED.
ARGUMENT IGNORED. TRICOMP requires the named directive to occur before
the first user-defined block. Either this rule was violated or an
invalid argument was presented to the named directive. In either case,
the directive is ignored.

D-6

NSWC TR 84-101

1*5*10. ARGUMENT FIELD FOR <name> DIRECTIVE INVALID OR MISSING. The argument
field for the named directive has either been discarded due to it being
incorrect or has not been specified. The directive is not honored.

1*5*11. UNKNOWN <name> DIRECTIVE DISCARDED. A directive has been misspelled
or an unknown character string appears in the directive field.

1*5*12. ILLEGAL ARGUMENT TYPE FOR <name> DIRECTIVE DISCARDED. An argument of
the wrong syntactic class has been presented to the named directive. The
argument is ignored.

1*5*13. INVALID <name> DIRECTIVE ARGUMENT. BASE REGISTER NOT IN RANGE 1 THRU
15. ARGUMENT IGNORED. The named directive has incorrectly used the
specified Base Register. Only Base Registers 1 through 15 are available
to THLL users. The directive is ignored.

1*7*1. MORE BEGIN'S THAN END'S. FATAL ERROR. More BEGINs than ENDs. This
error is generated when a FINIS is detected and not all the blocks in the
compile unit were closed. This is a fatal error which causes immediate
termination of the compilation of that compile unit.

1*7*2. ILLEGAL SUBSCRIPT BOUND - <number>.
or ILLEGAL SUBSCRIPT BOUND. DOUBLE NUMBER NOT ALLOWED.
or ILLEGAL SUBSCRIPT BOUND. REAL NUMBER NOT ALLOWED.
or ILLEGAL SUBSCRIPT BOUND. ILLEGAL NUMBER TYPE - <number>.
An illegal subscript bound has been specified and that subscript bound is
considered nonexistent. Either a real number or an integer number
greater than 32 bits has been used as a subscript bound.

1*7*3. ILLEGAL COMPONENT OFFSET - <number>.
or ILLEGAL COMPONENT OFFSET. DOUBLE NUMBER NOT ALLOWED.
or ILLEGAL COMPONENT OFFSET. REAL NUMBER NOT ALLOWED.
or ILLEGAL COMPONENT OFFSET. ILLEGAL NUMBER TYPE - <number>.
An illegal component offset has been specified. Integers greater than a
machine-dependent number and real numbers are illegal component offsets.
Zero is assumed for the offset.

1*7*4. ILLEGAL COMPONENT FIELD LENGTH - <number>.
or ILLEGAL COMPONENT FIELD LENGTH. DOUBLE NUMBER NOT ALLOWED.
or ILLEGAL COMPONENT FIELD LENGTH. REAL NUMBER NOT ALLOWED.
or ILLEGAL COMPONENT FIELD LENGTH. ILLEGAL NUMBER 7:7E = <number>.
An illegal component field length has been specified. Integers greater
than 32 and real numbers are illegal component field lengths. A 32-bit
field length is generated when this error message is generated.

1*7*5. ILLEGAL COMPONENT FIELD START BIT - <number>.
or ILLEGAL COMPONENT FIELD START BIT. DOUBLE NUMBER NOT ALLOWED.
or ILLEGAL COMPONENT FIELD START BIT. REAL NUMBER NOT ALLOWED.
or ILLEGAL COMPONENT FIELD START BIT. ILLEGAL NUMBER TYPE = <number>.
An illegal component field start bit has been specified. DOUBLES and
REALS are not allowed to specify component start bit. Start bit and
field length must be specified by integers. Also, the sum of start bit

D-7
L -4 TA

NSWC TR 84-101

and field length must be less than or equal to 32. Start bit 0 is
assumed when this error message is generated.

1*7*6. FORMAT DECLARATION TOO LONG. An extremely long format declaration
involving more than 511 items was processed. Only the first 511 items in
the declaration were saved. Shorten the format declaration or increase
the size via the FSL directive (see TRICOMP Compiler Directives, Appendix
C).

1*7*8. ILLEGAL FIELD SIZE OR REPETITION COUNT IN FORMAT DECLARATION
- <number>.

or ILLEGAL FIELD SIZE OR REPETITION COUNT IN FORMAT DECLARATION.
DOUBLE NUMBER NOT ALLOWED.

or ILLEGAL FIELD SIZE OR REPETITION COUNT IN FORMAT DECLARATION.
REAL NUMBER NOT ALLOWED.

or ILLEGAL FIELD SIZE OR REPETITION COUNT IN FORMAT DECLARATION.
ILLEGAL NUMBER TYPE - <number>.

An illegal field size or repetition count appeared in a format
declaration. Integers requiring more than 32 bits and real numbers
cannot be used in this way.

1*7*9. IMBALANCED PARENTHESES IN FORMAT DECLARATION. Imbalanced parentheses
in a format declaration. The error recovery algorithm should prevent
this error message.

1*7*10. INTERNAL COMPILER ERROR - NO IDENTIFIER FOR SEMANTIC ACTION 9 PASS 1.
Internal compiler error. Report this error to the THLL Compiler Group.

1*7*11. ILLEGAL INTERRUPT PROCEDURE NUMBER - <number>.
or ILLEGAL INTERRUPT PROCEDURE NUMBER. DOUBLE NUMBER NOT ALLOWED.
or ILLEGAL INTERRUPT PROCEDURE NUMBER. ILLEGAL NUMBER TYPE , <number>.
or ILLEGAL INTERRUPT PROCEDURE NUMBER. REAL NUMBER NOT ALLOWED.
The number used in the EXEC INTERRUPT PROCEDURE declaration is greater
than 47 or is not an integer.

1*7*12. This message is identical to 1*10*3 in printed format. This error
message occurs exclusively when there is an error concerning OPTARG. The
OPTARG attribute is handled differently from other attributes. It is
actually an attribute of the associated procedure rather than a formal
parameter. Therefore, the error message is generated in a different
manner.

1*7*13. CANNOT FIND PROCEDURE THAT USES OPTIONAL ARGUMENTS. The OPTARG
attribute was being processed in pass 1 and the compiler could not find
the associated procedure. This could be caused by an internal compiler
error.

1*7*14. TYPE MUST APPEAR BEFORE LINK, COMPONENT, STACK OR ARRAY. One of the
words INTEGER, DOUBLE, POINTER, REAL, or HALF has appeared after LINK,
COMPONENT, STACK, or ARRAY. The type keyword must be first.

D-8

NSWC TR 84-101

1*7*15. , INSERTED BEFORE '<id>' IN AN ATTEMPT TO CONTINUE. A comma was
missing in a list of identifiers or before OPTARG in a procedure argument
list.

1*7*16. VALUE PART MUST OCCUR FIRST IN A PROCEDURE HEAD. When describing the
formal parameters in a procedure declaration, those parameters passed by
value must be specified in a VALUE declaration before specifying the type
for any of the formal parameters.

1*7*17. MISSING ',' INSERTED IN THIS DECLARATION IN AN ATTEMPT TO CONTINUE.
A comma was missing between the elements of a format or component
declaration.

1*7*18. THE PROPER FORM FOR THIS DECLARATION IS 'EXEC INTERRUPT <NUM.>
PROCEDURE <ID.>'. Either EXEC or INTERRUPT was missing in the procedure
head of this procedure declaration.

1*7*19. 'LOGICAL' or 'ARITHMETIC' MUST APPEAR BEFORE 'FIELD'. Either LOGICAL
or ARITHMETIC appeared after FIELD in the component declaration.

1*7*20. '<id>' NOT ALLOWED IN FORMAT DECLARATION. A typing error resulted in
the use of an identifier within a format list element.

1*7*21. ILLEGAL NUMBER IN FORMAT - <number>.
or ILLEGAL NUMBER IN FORMAT. DOUBLE NUMBER NOT ALLOWED.
or ILLEGAL NUMBER IN FORMAT. REAL NUMBER NOT ALLOWED.
or ILLEGAL NUMBER IN FORMAT. ILLEGAL NUMBER TYPE - <number>.
A number type other than the special number types for formats was used
within a format. The only acceptable number types for formats are R, S,
A, I, 0, F, E, H, D, L, and P. Regular number types can only be used as
a repetition count. The regular number types are decimal and real
numbers and the number types C, X, and B.

1*7*22. 'S' IGNORED IN AN ATTEMPT TO CONTINUE. A $ has appeared before an R
number (carriage return count) in a format declaration. This construct
is illegal.

1*7*23. P.NUM IGNORED IN AN ATTEMPT TO CONTINUE. P.NUMs are used to place
the decimal point when using an F output format in a format declaration.
This error occurs when P.NUM is used with other output formats.

1*7*24. MISSING 'DEFINE' IN PROCEDURE DECLARATION. All procedure
declarations must begin with DEFINE. It is not allowed in a procedure
head when describing a formal parameter as a procedure. DEFINE is also
prohibited in EXTERNAL declarations.

1*7*25. COMMONS MUST NOT OVERLAP. PREVIOUS COMMON CLOSED. The previous
common was not terminated by an ENDCOM or COMEND. An ENDCOM is assumed
and the previous common is terminated.

1*7*26. SUPERFLUOUS ENDCOM OR COMEND. COMMON NOT OPEN. An ENDCOM or COMEND
reserved word has occurred. Either no common has been started or an

D-9

I.i

NSWC TR 84-101

ENDCOM or COMEND already followed the last common declared in this block.
This can occur when attempting to nest commons within the same block.
Commons defined in different blocks do not overlap, even when the blocks
are nested. The last common in a block is assumed closed at the end of
the block if the ENDCOM or COMEND is missing.

1*7*27. '<attribute>' MAY NOT BE DEFINED IN A COMMON. Only simple Variables,
ALPHA variables, arrays, and stacks may be included in a common.
Devices, formats, components, labels, switches, and procedures may not be
included in commons. GLOBAL, EXTERNAL, and OWN may not be specified in
the common body.

1*9*1. MAXIMUM NUMBER OF ALLOWED BLOCKS EXCEEDED. FATAL ERROR. Maximum
number of allowed blocks exceeded. This is a pass 1 fatal error that
causes immediate termination of the compilation for the current compile
unit. Increase the number of blocks allowed via the MAXBLK compiler
directive (see TRICOMP Compiler Directives, Appendix C).

1*9*2. MORE END'S THAN BEGIN'S. FATAL ERROR. This error is a fatal error
that causes the immediate termination of the compilation for the current
compile unit. This error should not occur because the error recovery
algorithm should have discarded the extra ENDs.

1*9*3. '<id>' INCOMPLETELY DEFINED. The identifier in this error message is
not completely defined. The most likely cause for this error message is
that an identifier is listed in the argument list of a procedure
declaration and does not appear in the specification part of the
procedure head.

1*10*1. INCREASE SIZE OF PASS 1 ID STACK. FATAL ERROR. An internal stack in
pass 1 has overflowed. Increase the internal stack size via the IDSS
compiler directive (see TRICOMP Compiler Directives, Appendix C).

1*10*2. ILLEGAL DEFINITION <attribute> FOR IDENTIFIER '<id>'. DEFINITION
WILL BE DISCARDED. An illegal combination of attributes has been
initially specified for an identifier. The identifier exists in the
compiler but none of the specified attributes are saved. If the
specified attributes do not agree with the associated data declaration,
then consult the THLL Compiler Group.

1*10*3. NEW DEFINITION <attribute> IS INCONSISTENT WITH OLD DEFINITION
<attribute> FOR IDENTIFIER '<id>'. NEW DEFINITION WILL BE DISCARDED.
The same identifier in the same block has appeared in contradictory data
declarations. The cross reference should indicate the lines where the
identifier was previously defined. A misunderstanding of the compile
unit's block structure could cause this error.

1*10*4. '<id>' MULTIPLY DEFINED AS <attribute>. The same identifier in the
same block has appeared in contradictory data declarations. The multiply
defined attributes are listed in this error message. A misunderstanding
of the block structure of the compile unit could cause this error. The
attributes from the current line are ignored.

D-10

V K

NSWC TR 84-101

1*10*5. SHARED IDENTIFIER '<id>' FOUND OUTSIDE PROCEDURE, OWN ADDED. A
non-OWN identifier was defined in the outermost block (block 2).
Variables, arrays, and stacks must be declared as OWN.

1*10*6. '<id>' WAS NOT PREVIOUSLY DEFINED AS A FORMAL PARAMETER. DEFINITION
IGNORED. An error concerning the formal parameters in a procedure
declaration has occurred. The description of the formal parameters which
appears before the procedure body includes the description of an
identifier not specified in the formal parameter list. The extra
identifier is not added to the formal parameter list. The formal
parameter list is the list of identifiers enclosed in parentheses which
appears just after the procedure identifier.

1*10*7. GLOBAL '<id > ' NOT DECLARED OWN. OWN ADDED. A non-OWN simple
variable, ALPHA, stack, or array was declared GLOBAL. The OWN attribute
has been added in an attempt to retain meaningful information.

1*10*8. FORMAL PARAMETER '<id>' CANNOT BE PASSED BY VALUE. VALUE IGNORED.
An array, stack, ALPHA, format, or device identifier was included in the
value part of the procedure head. None may be passed by value. The
corresponding identifier should be removed from the value statement.

1*10*9. '<id>' CANNOT BE DECLARED GLOBAL. GLOBAL IGNORED. The <id> has been
declared global in an earlier declaration. Devices, switches, labels,
and components cannot be declared global. The global attribute for that
<id> was dropped.

1*10*10. '<id>' PREVIOUSLY DEFINED OUTSIDE COMMON. NOT INCLUDED IN COMMON.
The <id > has occurred in a declaration in the same block before the
beginning of the common. If the <id> appears in a declaration after the
ENDCOM or COMEND, another error message identifies the multiple
declaration.

1*10*11. GLOBAL PROCEDURE '<id>' MUST BE DECLARED IN BLOCK 2. Any global
procedure must be declared in the outermost block, not local to a
procedure.

1*10*12. PROCEDURE '<id>' CANNOT BE A FORMAL PARAMETER FOR A LINK PROCEDURE.
No procedure entry point may be passed to a link procedure. When a link
procedure is called, the base registers can be reloaded. Therefore, the
new address space may not be valid for the parameter procedure.

1*11*1. SYNONYM BODY TABLE OVERFLOW. FATAL ERROR. The synonym table has
overflowed. Increase the synonym table size via the SYN compiler
directive (see TRICOMP Compiler Directives, Appendix C).

1*11*2. ILLEGAL SYNONYM NAME 'XX.. .X'. 'XX.. .X' is the spelling of the item.

1*11*3. EQUAL (-) MISSING IN SYNONYM DECLARATION. The equal (') has been
omitted in a synonym declaration. The equal is added.

D-11

[I.

NSWC TR 84-101

1*11*4. 'XX...X' ENCOUNTERED IN A SYNONYM DECLARATION. A ';' IS EXPECTED.
'XX.. .X' is the spelling of the item.

1*11*5. SYNONYM 'XX.. .X' CAN'T BE CALLED CYCLICALLY. 'XX.. .X' is the
spelling of the item.

1*11*6. MULTIPLE LEVELS OF INSERT CALLS NOT ALLOWED. FATAL ERROR. Insert
calls can appear only in the text of the original source text. Insert
calls cannot appear within an insert file.

2*1*2. FATAL ERROR. UNEXPECTED END OF FILE. Internal compiler error.
Report this error to the THLL Compiler Group.

2*1*3. UNEXPECTED CONSTANT BEING REMOVED IN AN ATTEMPT TO CONTINUE. Two
adjacent operands are found. The second is removed in an attempt to
continue. An out of place data declaration can also cause this message.

2*1*5. FATAL ERROR. INCREASE HEAD (HEAD STACK). The Head stack has
overflowed. Increase it over the current size via the HEAD compiler
directive (see TRICOMP Compiler Directives, Appendix C).

2*1*6. FATAL ERROR. INCREASE DSS (D STACK). The D stack has overflowed.
Increase it over the current size via the DSS compiler directive (see
TRICOMP Compiler Directives, Appendix C).

2*1*7. FATAL ERROR. INCREASE RSS (R STACK). The R stack has overflowed.
Increase it over the current size via the RSS compiler directive (see
TRICOMP Compiler Directives, Appendix C).

2*1*8. FATAL ERROR. INCREASE LAB (LABEL TABLE). The compiler generated
label table has overflowed. Increase it over the current size via the
LAB compiler directive (see TRICOMP Compiler Directives, Appendix C).

2*1*9. FATAL ERROR. INCREASE ICF (ICF LIST). The ICF working buffer has
overflowed. Increase it over the current size via the ICF compiler
directive (see TRICOMP Compiler Directives, Appendix C).

2*1*10. COMMON '<id>' CANNOT OCCUR IN A STATEMENT OR EXPRESSION. Symbols
within a COMMON block can be referenced, the origin of the COMMON cannot.

2*1*11. FATAL ERROR. TOO MANY UNDEFINED IDENTIFIERS. TRICOMP allows only 50
undefined identifiers.

2*1*12. THE ARGUMENT HAS AN ILLEGAL TYPE FOR THE CURRENT OPERATOR. An
argument of the wrong type has been presented to an operator.

2*1*13. LABEL '<id >' IS NOT A VALID TARGET FOR BLOCK EXIT.
or NO VALID TARGET FOR BLOCK EXIT.
The label <id > used in an EXIT statement is not a label for a currently
active block; or the user cannot exit from the current block.

D-12

NSWC TR 84-101

2*1*14. LABEL '<id>' IS NOT A VALID TARGET FOR LOOP EXIT.
or NO VALID TARGET FOR LOOP EXIT.
The label <id> used in a LOOPEXIT statement is not a label for a
currently active loop; or the user cannot exit from the current loop;
or the user may not be in a loop.

2*1*15. SWITCH INDEX MUST BE AN INTEGER EXPRESSION.
or IF TEST MUST BE AN INTEGER EXPRESSION.
or CASE TEST MUST BE AN INTEGER EXPRESSION.
or WHILE TEST MUST BE AN INTEGER EXPRESSION.
or ARRAY SUBSCRIPT MUST BE AN INTEGER EXPRESSION.
or STACK SUBSCRIPT MUST BE AN INTEGER EXPRESSION.
or OR OPERAND MUST BE AN INTEGER EXPRESSION.
or AND OPERAND MUST BE AN INTEGER EXPRESSION.
or XOR OPERAND MUST BE AN INTEGER EXPRESSION.or NOT OPERAND MUST BE AN INTEGER EXPRESSION.

The index for a case statement, switch, stack subscript, array subscript,
or logical operator is an illegal type for the named operation.

2*1*16. COMPONENT '<id>' MUST USE A POINTER EXPRESSION. The expression for a
component must be a pointer expression.

2*1*17. PROCEDURE '<id>' HAS TOO MANY ACTUAL PARAMETERS. The call for a
procedure contains too many parameters.

2*1*18. ACTUAL PARAMETER NUMBER '<number>' IN CALL FOR '<id>' IS INVALID.
The n'th actual parameter's type is not compatible with the n'th formal
parameter's type.

2*1*19. ARRAY '<id>' HAS WRONG NUMBER OF SUBSCRIPTS. The use of an array
contains the wrong number of subscripts.

2*1*20. SWITCH INDEX HAS BEEN CONVERTED TO INTEGER FROM REAL.
or IF TEST HAS BEEN CONVERTED TO INTEGER FROM REAL.
or CASE TEST HAS BEEN CONVERTED TO INTEGER FROM REAL.
or WHILE TEST HAS BEEN CONVERTED TO INTEGER FROM REAL.
or ARRAY SUBSCRIPT HAS BEEN CONVERTED TO INTEGER FROM REAL.
or STACK SUBSCRIPT HAS BEEN CONVERTED TO INTEGER FROM REAL.
or OR OPERAND HAS BEEN CONVERTED TO INTEGER FROM REAL.
or AND OPERAND HAS BEEN CONVERTED TO INTEGER FROM REAL.
or XOR OPERAND HAS BEEN CONVERTED TO INTEGER FROM REAL.
or NOT OPERAND HAS BEEN CONVERTED TO INTEGER FROM REAL.
The index for a case statement, switch, stack subscript, array subscript,
or logical operator has been converted from a real expression to an
integer expression.

2*1*21. ARRAY '<id>' HAS CONSTANT INDEX OUT OF BOUNDS. A constant index has
been specified which is greater than the range of the named array.

2*1*22. PASS 2 COMPILER ERROR (1). An internal compiler error has occurred.
Report this error to the THLL Compiler Group.

D-13

NSWC TR 84-101

2*1*23. '<id > ' CAN BE USED ONLY IN PRESETS. LINKWORD and INITWORD are only
PRESET functions.

2*1*24. INVALID USE FOR INLINE FUNCTION '<id>'. The named function is not
syntactically correct in its use.

2*1*25. THE OPERATOR '<id > ' IS INCORRECTLY USED IN A PRESET. The operator
along with its operand(s) is not a supported preset expression.

2*1*26. NON-OWN VARIABLE '<id > ' CAN NOT BE PRESET. Only OWN variables may be
preset in THLL.

2*1*27. INCONSISTENT RANGE VARIABLES '<number>' AND '<number>' IN LEFT SIDE
OF PRESET. Presetting may take place in the storage for only one
variable at a time.

2*1*28. INVALID PRESET RANGE. The scope for a preset went outside the
storage area for a variable, or it was not possible to end the preset at
the user-specified location.

2*1*29. ALPHA VARIABLE '<id>' MAY NOT BE RANGE PRESET. It is not possible to
range preset ALPHA variables.

2*1*30. OVERLAPPING PRESET FOR VARIABLE '<id>' NOT VALID. It is not possible
to preset a storage element more than once.

2*1*31. TOO MANY RIGHT SIDE PRESET EXPRESSIONS. For a range preset, there
are more preset expressions than storage elements. For a simple preset,
there are more preset expressions than storage elements.

2*1*32. COMPLETE VALUE NOT FOUND FOR VARIABLE OR EXPRESSION. The value for a
variable or expression is not known at this time. No presetting is done.

2*1*33. INVALID USE OF IDENTIFIER '<id>' IN PRESETS. Labels, stacks, and
switches may not be used in presets in any way. LOC of own and external
variables is allowed. Formal parameters and shared variables are not
allowed.

2*1*34. ATTEMPT TO PRESET BEYOND DECLARED RANGE OF ALPHA VARIABLE '<id>'. An
ALPHA variable has been preset with more characters than the declaration
allows. The truncated string is assigned to the variable.

2*1*35. RETURN EXPRESSION IGNORED FOR PROCEDURE THAT HAS NO TYPE. Untyped
procedures should return with the statement 'RETURN' rather than with
'RETURN expression'.

2*1*36. SWITCH INDEX HAS BEEN CONVERTED TO INTEGER FROM DOUBLE.
or CASE TEST HAS BEEN CONVERTED TO INTEGER FROM DOUBLE.
or ARRAY SUBSCRIPT HAS BEEN CONVERTED TO INTEGER FROM DOUBLE.
or STACK SUBSCRIPT HAS BEEN CONVERTED TO INTEGER FROM DOUBLE.
This is a warning message. Only the least significant half of the double
expression is used in the named operation. This message does not mean

D-14

-AM

NSWC TR 84-101

that an error exists, but it is used to flag possible problems if the
most significant half of double expression is significant.

2*1*37. '*' OPERAND HAS BEEN CONVERTED TO REAL FROM DOUBLE. This is a
warning message. It is used to flag possible significance loss when a
double exceeds the significance of a real.

2*1*38. UNDEFINED '<id>' ASSUMED TO BE A SWITCH. Identifier is undefined.
It is assumed to be a switch identifier in an attempt to continue.

2*1*39. UNDEFINED '<id>' ASSUMED TO BE A LABEL. Identifier is undefined. It
is assumed to be a label identifier in an attempt to continue.

2*1*40. UNDEFINED '<id>' ASSUMED TO BE AN INTEGER PROCEDURE. Identifier is
undefined. It is assumed to be an integer procedure in an attempt to
continue.

2*1*41. UNDEFINED '<id>' ASSUMED TO BE AN INTEGER VARIABLE. Identifier is
undefined. It is assumed to be an integer variable in an attempt to
continue.

2*1*42. COMPONENT '<id>' CANNOT BE INDEXED. The component does not have a
field specification which can be indexed (see Section 3.6.5).

2*1*43. COMPONENT '<id>' MUST BE EITHER REGULAR OR INDEXED. The component
has more than two arguments.

2*1*44. THE OPERATION '<operator> <type>' IS INVALID AND HAS BEEN CHANGED TO
'<operator> <type>' IN AN ATTEMPT TO CONTINUE. The operand type for the
unary operator is invalid.

2*1*45. THE OPERATION '<type> <operator> <type>' IS INVALID AND HAS BEEN
CHANGED TO '<type> <operator> <type>' IN AN ATTEMPT TO CONTINUE. The
operand types for the binary operator are invalid.

2*1*46. FATAL ERROR. STACK UNDERFLOW. This error message may be caused by
errors in the source compile unit such as too many END's.

2"I*47. PROCEDURE '<id>' MUST BE DEFINED IN PRIVILEGED MODE. EXEC and EXEC

INTERRUPT procedures must be defined in privileged mode. See the PRIV
directive in TRICOMP Compiler Directives, Appendix C.

2*1*48. A RETURN IN A VALUED PROCEDURE MUST HAVE A RETURN EXPRESSION. This
is a warning message. A zero of the appropriate type is supplied as the
default return value.

2*1*49. LINK, EXEC, OR EXEC INTERRUPT PROCEDURE '<id > ' CANNOT BE A PARAMETER
IN A PROCEDURE CALL. EXEC and EXEC INTERRUPT procedures have special
entry sequences. Link procedures must be called with a LINK instruction.
The procedure being called cannot distinguish these parameter procedures
from normal parameter procedures.

D-15

NSWC TR 84-101

2*1*50. LOC OF PROCEDURE '<id>' IS USED IN THE WRONG CONTEXT. The LOC of a

procedure identifier can be used only as the first parameter of LINKWORD
or INITWORD on the right side of a preset.

2*1*51. THE <IF EXPRESSION> OR <CASE EXPRESSION> USED IN THIS CONTEXT MUST
NOT HAVE A COMMON TYPE 'NULL>. The lowest inclusive common type is type
N and the IF or CASE construct is being used for its value. Pointer or
ALPHA values are generally incompatible with other types. Check the type
tables for details.

2*1*52. PROCEDURE '<id>' HAS TOO FEW ACTUAL PARAMETERS.

2*2*1. SYNTAX ERROR, LAST ITEM READ '<item>'

2*2*4. SYNTAX ERROR, LAST ITEM READ '<item>'.
SEMICOLON INSERTED.

2*2*5. SYNTAX ERROR, LAST ITEM READ '<item>'.

DISCARDED '<item>'.
or SYNTAX ERROR, LAST ITEM READ '<item>'.

DISCARDED '<item>' AND ITEM PRECEDING IT.
The item is always an operator or a delimiter. The second version
indicates that a symbol or a constant preceding the operator/delimiter
has been discarded also.

2*2*6. SYNTAX ERROR, LAST ITEM READ '<item>'.
MISSING '<item>'.

2*2*7. SYNTAX ERROR, LAST ITEM READ '<item>.
SUPERFLUOUS '<item>'.

2*2*8. SYNTAX ERROR, LAST ITEM READ '<item>'.
'<item>' REPLACED BY FINIS.

2*2*9. SYNTAX ERROR, LAST ITEM READ '<item>'.
NO EXPRESSIONS OR STATEMENTS ALLOWED IN OUTERMOST BLOCK.

If the outermost block contains expressions or statements, then this
error message appears on the END closing the outermost block,

2*2*10. SYNTAX ERROR, LAST ITEM READ '<item>'
MOST RECENT <element> REPLACED BY 0.

<element> may be one of the following:
PROGRAM
BLOCK
PARENTHESIZED EXPRESSION
IF EXPRESSION

CASE EXPRESSION

D-16

NSWC TR 84-101

2*2*11. SYNTAX ERROR, LAST ITEM READ '<item>'.
MOST RECENT <kind> DECLARATION DISCARDED.

<kind> may be one of the following:
STATEMENT OR
PRESET
PROCEDURE

2*2*12. FINIS ENCOUNTERED IN WRONG CONTEXT.

2*2*13. TOO MANY ERRORS, PARSER GIVES UP. This message is issued when 100
syntax errors have been encountered.

2*2*14. LOST IN ERRORS, HEAD STACK UNDERFLOW. This message may be issued if
the outermost block contains expressions or statements and there is a
semicolon before FINIS.

2*2*15. SYNTAX ERROR, LAST ITEM READ '<item>'.
LOST IN ERRORS, IL STACK OVERFLOW.

An internal table overflows. Most likely this will never happen. If so,
correct the errors and try it again.

2*2*16. SYNTAX ERROR, LAST ITEM READ '<item>'
PRESET MODE WILL BE TERMINATED.

The indicated syntax error causes the termination of preset mode.

2*2*18. COMPILER ERROR ERRP2. An internal compiler error has occurred in
Procedure ERRP2. Report this error to the THLL Compiler Group.

3*1*1 through 3*1*20. An internal compiler error has occurred during code

generation. Report these errors to the THLL Compiler Group.

3*1*21. INCREASE TMPMAX PARAhETER. NO TEMPS AVAILABLE AT CODE FILE POSITION
- <number>. Due to a large stack frame size, the compiler was unable to
allocate sufficient runtime stack size for temporaries. Increase the
temporary stack allocation size via the TMPMAX compiler directive (see
TRICOMP Compiler Directives, Appendix C).

3*1*22. VALS OPERATOR IMPROPERLY USED AT CODE FILE POSITION = <number>. The
VALS operator is used in VAX TRICOMP to change the normal mode for
passing arguments to procedures written in other languages. THLL
programs always use the "VAX pass by reference" calling mechanism, but
procedures written in other languages may need to receive parameters by
the "VAX pass by value" method. VAL$ is only allowed in VAX THLL
programs, and it can only be used on actual parameters during a procedure
call. VALUE must be specified for the corresponding parameter
description in the EXTERNAL declaration or procedure definition of the
procedure being called.

4*1*1. COMPATIBILITY DATA TABLE OVERFLOW. The table which contains

compatibility information for this compile unit has overflowed its
default size. Report this error to the THLL Compiler Group.

I
D-17

NSWC TR 84-101

4*1*2. BASE REGISTER <number> USED BY SYSTEM AND OWN DATA.

FATAL ERROR.
or BASE REGISTER <number> USED BY SYSTEM AND INSTRUCTIONS.

FATAL ERROR.
or BASE REGISTER <number> USED BY SYSTEM AND CONSTANTS.

FATAL ERROR.
or BASE REGISTER <number> USED BY OWN DATA AND INSTRUCTIONS.

FATAL ERROR.
or BASE REGISTER <number> USED BY OWN DATA AND CONSTANTS.

FATAL ERROR.
or BASE REGISTER <number> USED BY INSTRUCTIONS AND CONSTANTS.

FATAL ERROR.
The indicated base register is currently spanning the two indicated
protection areas which is illegal. This situation can occur when one
protection area becomes large enough to require the next consecutive base
register, which happens to be allocated, or when base registers are
indeed multiply allocated via the OWNBR, INSBR, or CONBR directives (see
TRICOMP Compiler Directives, Appendix C).

D.5 COMPILER ASSEMBLED OBJECT LISTING (BP TRICOMP ONLY)

When the Binary Mode of compilation is invoked, either by default or the
/BIN qualifier on the TRICOMP command, the compiler does not produce an
assembly source code file. Instead, it assembles the assembly source code for
the TRIDENT Basic Processor (TBP) and produces a binary code file.

A listing of the assembled object is produced between the THLL source and
the cross reference map.

The format of this listing is a line-by-line list of the assembly object
where each line is prefixed by a header. The header for a line of assembly
object which assembles to a value (i.e., not ASMOPT, GLOBAL, ENTRY, SECT, or
END lines) is:

XXXX YYYYYYYY PQ

where YYYYYYYY is an assembled value at virtual address XXXX. P and Q are
either the letters A, E, L, or a blank. The letter A implies a relocatable
address, E implies an external address, and L implies an LTO. If a letter
appears in the P position, then the left halfword is meant. If it appears in
the Q position, then the right halfword is meant. The header is all blank for
other assembly lines.

D- 18

NSWC TR 84-101

D.6 COMPILER GENERATED STATISTICS (BP TRICOMP ONLY)

A one page summary of statistics is printed following the listing of the
THLL source code and before the symbol table and cross reference map.

This summary of the instruction mix appears in five groups of three
columns in each group. Each group contains the opcode, the absolute count of
this opcode and che percentage of this opcode in the total instruction mix.
The width for each group of data is 24 characters. The format for the data in
a group is shown below:

OP CODE MNEMONIC DECIMAL COUNT PERCENTAGE OF USE

These 24 lines are followed by two blank lines. Next is data concerning
the configuration summary. The summary includes the site identification, NSWC
or GEOS, the revision and change number of TRICOMP as well as the TRILOAD
library name, the name of the current compile unit, and the date and time when
the compilation started. The format of the configuration summary is as
follows:

CONFIGURATION SUMMARY
TRICOMP <site> THLL<rev>.<change>
CU LIBR,<librname> NAME,<cuname> DATE,<mm/dd/yy> TIME,<hh.mm.ss>

The configuration summary is followed by a blank line. Next is data
concerning the various protection areas used. The virtual origin of a
protection area is provided in hexadecimal. The size of that protection area
is given in both hexadecimal and decimal. If an area is not used, there is no
printout for that area. The three possible lines of output are:

PC3 ORIGIN <virtual address> OWN SIZE <number> HEX <number> DEC
PC6 ORIGIN <virtual address> INSTRUCTION SIZE <number> HEX <number> DEC
PC5 ORIGIN <virtual address> CONSTANT SIZE <number> HEX <number> DEC

The protection area summary is followed by a blank line and then an
optional summary of the compiler predefined routines used by this compile
unit. All these routines reside on the TRILOAD System Library, SYSLIB.
Secondary routines (required by these referenced predefined routines) do not
appear in this list, but they are automatically loaded by TRILOAD. In some
cases, more than one predefined procedure is included in one SYSLIB library
module. If the user redefines one of these predefined procedures by an
external declaration or procedure declaration, then the name does not appear
in this list because the system predefined procedure is not used. The format
of this optional summary is as follows:

0-19

NSWC TR 84-101 H

SYSTEM DEFINED LIBRARY ROUTINES USED BY THIS PROGRAM
<namel> <name2> ...

These data lines are followed by a blank line. The next line indicates
the compiler mode. This line is either:

SOURCE MODE
or

BINARY MODE

>-20

NSWC TR 84-101

APPENDIX E

SYMBOL TABLE AND CROSS REFERENCE MAP EXPLANATIONS

E.1 EXPLANATION OF SYMBOL TABLE

The symbol table is organized in alphabetical order within each block.
The blocks are listed in the order in which they are opened. The system
predefined symbols are placed into block 1, which by definition encloses all
user-defined blocks. User-defined blocks start with block number 2. The
parent block (enclosing block) number of each block is printed in the header
of the symbol table for that block. The scope of the block is also indicated
by embracing line numbers. These line numbers refer to those on the left of
the listing.

A block has two foris. Any BEGIN END pair delimits a block. Since a
block can contain other blocks, an equal number of BEGINs and ENDs must be
contained between the BEGIN END pair. The other form of block is called a
formal parameter block. A formal parameter block starts just after the
procedure identifier in a procedure declaration, and it ends at the end of the
procedure body.

Example:

DEFINE INTEGER PROCEDURE X

/* Formal parameter block begins */
(A,B);

INTEGER A, B;

BEGIN

(procedure body)

END /* Formal parameter block ends */

NOTE

A formal parameter block is opened even when

there are no formal parameters.

E-1

A4

NSWC TX 84-101

Symbol table information is printed below the following header.

ATTRIBUTES OFFSET SYMBOLS COMMON

The ATTRIBUTES column is broken up into a number of fields. The first
field indicates the storage class. The second field indicates the type of the
identifier. The third field represents the kind of data structure. If the
symbol is a synonym, then SYNONYM is printed starting in the first of these
columns. An optional fourth field indicates the size (in THLL words) of an
array header. An optional fifth field (which is the fourth field if the array
header size is not present) indicates additional information based on the kind
of symbol.

The first field indicates the storage class. The attributes below are
listed in the priority used in selecting the printed attribute. Therefore,
something that is both global and OWN has the global attribute printed.

V - formal parameter passed by value
F - formal parameter passed by reference
L - LINK - either EXTERNAL or GLOBAL
G - global
E - external
0-OWN
S - shared - non-OWN arrays, stacks and simple variables
b - blank, none of the above

The second field indicates the type associated with the symbol.

H - type half
I - type integer
D - type double
R - type real
P - type pointer
A - type ALPHA
B - used as block label
F - used as FOR label
E - EXEC procedure
T - EXEC INTERRUPT procedure

b - blank - untyped (type N)

The third field indicates the kind or syntactic class of the symbol. The
following attributes are possible.

E-2

I.. -

NSWC TR 84-101

V - simple variable
A - array
S - stack
P - procedure

D - device
F - format

L - label
W - switch
C - component
M - common

The fourth field indicates the size of an array header.

2 - one-dimensional array header

4 - two-dimensional array header
6 - three-dimensional array header

NOTE

This field is not used if the header does not exist. In the
case of no headers, the fifth field becomes the fourth field.

The fifth field varies depending on the kind of symbol.

(dl,d2,d3) - Present for commons, arrays, stacks, and alphas.
(dl,d2,d3) indicates the size of each dimension of
the data item. (dl,d2,d3) will be (dl) for a common,
one dimensional array, stack or alpha; (dl,d2) for a
two dimensional array; and (dl,d2,d3) for a three
dimensional array. dl, d2, and d3 may be *.

((sb,nb),off) - Present for components. ((sb,nb),off) indicates the
start bit, number of bits and the offset of the

component. (sb,nb) is not present for an ALPHA
component.

(par) - Present for procedures. (par) indicates the number of
formal parameters that the procedure has. If a
procedure has optional arguments, then (par,OPTARG)
indicates this.

(swi) - Present for switches. (swi) indicates the number of
switch elements that the switch has.

E-3

"'1.

NSWC TR 84-101

The OFFSET column is printed as a hexadecimal number. It is used for a
number of purposes. For all OWN and COMMON variables, arrays, and stacks, the
runtime storage allocation relative to the origin of the proper program
section appears in this field. For shared variables, arrays, and stacks, the
number represents the offset within the compiler supplied runtime stack frame.
The offset for an array is for the first element of the array. The offset for
FORMATS, ALPHA variables, and stacks is the address of the header. For the
BP, offsets are in units of words. For the VAX and MC68000, they are in units
of bytes.

The SYMBOL column contains the first 19 characters of the identifier. If
the identifier belongs to a common, then the SYMBOL column contains the first
9 characters of of the identifier, a space, and the first 9 characters of the
common name.

E.2 EXPLANATION OF CROSS REFERENCE MAP

When a cross reference map is requested, the symbol information appears
on the left part of the page. The line numbers where the identifier is
defined appear first to the right of the symbol information, followed by a
"/", and then the line numbers where the identifier is used. All line numbers
are decimal and refer to the numbers on the right side of the TRICOMP listing.

The references appear in the following form:

[N*] LLLL [,I]

where

N - the number of times the identifier is referenced on that
line. The [N*] is not printed when N - 1.

LLLL - the line number within the input file.

I - the insert file that the line comes from. If the line comes
from the input file specified on the TRICOMP command, the
[,I] is not printed.

If a symbol is undefined or defined in a block of insufficient scope, the
symbol is included in the symbols of block 0, which appears after the last
user-defined block. If there are no undefined symbols, the block 0 output is
suppressed.

If a cross referenced symbol occurs in an insert file, the name of that
insert file can be found in the list of insert file names at the end of the
cross reference listing. The format for the insert file summary is as
follows:

E-4

NSWC TR 84-101

LIST OF INSERT FILES

NN RRRRRRRR(FFFFFFFF)

where

NN - the insert file number used in the references above

RRRRRRRR - the insert file name

FFFFFFFF - the insert file directory name as explained in Appendix G.

After the undefined symbols (block 0), and the list of insert files (if
they exist), a summary of the commons appears. The base offset of the common
and the GLOBAL or EXTERNAL attribute of the common can be found in the symbol
table for the block where the common is declared.

The summary for each common starts with the following line:

SUMMARY FOR COMMON AAAAAAAA SIZE OF COMMON (QQQQQ) - XX (HEX) DD (DEC)

where

AAAAAAAA is the name of the common

(QQQQQ) is (WORDS) for BP TRICOMP, and (BYTES) for VAX and MC TRICOMP

XX is the size of the common as a hexadecimal number

DD is the size of the common as a decimal number

Information concerning symbols in a common is printed in a table of six
columns. The table may be broken into three parts spread across the page.

Adjacent symbols in the common appear vertically in the symbol section.
The symbol at the end of the first part is adjacent with the symbol at the top
of the second part. The table has the following two-line header (repeated
three times across the page).

E-5

__1

NSWC TR 84-101

QQQQ OFST SYMBOL HDR SIZE (QQQQQ)
(HEX) SIZE (DEC) (HEX)

where

QQQQ is WORD for BP TRICOMP, and BYTE for VAX and MC TRICOMP

(QQQQQ) is (WORDS) for BP TRICOMP, and (BYTES) for VAX and MC TRICOMP

The symbol name within the common appears in the SYMBOLS column. The
hexadecimal offset of that symbol from the beginning of the common is given in
the OFST column. This is the offset to the first word after the header of
arrays, stacks, and ALPHAs. If the symbol has a header, the size of the
header is printed as a decimal number. The size of the data structure is
calculated (excluding headers) and printed as hexadecimal and decimal numbers.
Allocation of memory is target machine-dependent. Therefore, differences in
the length of commons and in the size of some data structures should be
expected for different target machines.

The following modified example was generated for the BP. It would appear
broken into three similar columns.

WORD OFST HDR SIZE (WORDS)
(HEX) SYMBOL SIZE (DEC) (HEX)

0 Fl 2 2
3 ALPH 1 1 1
4 G1 1 1
5 EI 1 1
6 DV 2 2
8 DV2 2 2
A DV3 2 2

10 RAG 4 30 1E
32 MOP 4 42 2A
5E PSS 2 21 15
73 COSE 1 1
74 PIE 1 1
75 FRIEND 1 1

A summary of the runtime stack requirements for the compile unit appears
after the symbols for block 0, the insert file list, and the COMMON summary
(if they exist). A stack frame is acquired from the runtime stack whenever a
procedure is entered. The stack frame is sufficient to handle all storage
required by shared variables, arrays, and stacks defined within the procedure,
formal parameters, compiler-generated temporaries, and system support routine
scratch areas. Certain system procedures such as OPEN extend the current
stack frame. This extension is not included in the runtime stack
requirements. Only GLOBAL or referenced procedures are listed in the summary
since only those procedures can contribute to the runtime stack. The summary

E-6

NSWC TR 84-101

is not printed if the \ XREF - 0 directive (suppress symbol table and cross
reference output) is used.

If no callable procedures exist in the compile unit, the following line
is printed:

NO RUNTIME STACK REQUIREMENTS.

The runtime stack summary has the following form:

RUNTIME STACK REQUIREMENTS.

BLOCK STACK FRAME SIZE PROCEDURE
(DECIMAL)

2 26 PROCI
2 20 PROC2

The block number indicates the block in which the procedure is defined.
The stack frame size is expressed as a decimal integer. For BP TRICOMP, the
stack frame size is in words, whereas for MC and VAX TRICOMP, it is in bytes.
The structure of the runtime stack and the layout of the stack frames is
target machine-dependent.

E-7

NSWC TR 84-101

APPENDIX F

THLL PROGRAM REPORTS

F.1 GLOBAL CROSS REFERENCE REPORT

The global cross reference report presents an overview of the global
symbols of a program. The actual individual line references for those symbols
(as well as symbols local to a compile unit) can be found in the local cross
i:iference at the end of the .TLS file. The global cross reference report is
useful in determining which procedures and modules reference a particular
global symbol. Symbols defined within an insert file or within a COMMON are
not global, but are normally used in many compile units and are therefore
included in the global cross reference report.

F.1.1 eroducing a Global Cross Reference Report

The notation .EXT; implies the highest version for input and the
creation of a new version for output.

The global cross reference report is developed from the global cross
reference data files that result when TRICOMP compiles a compile unit. These
files by default have a .GXR; extension. This report is generated in a

two-step process.

The first step is to combine the .GXR; files and the current master
cross reference data file into a new master cross reference data file. The
master cross reference data file by default has a .MXD; extension. Updating
the master cross reference data file is done by invoking the GXRUPDATE
command. By default GXRUPDATE executes under the assumption that all .GXR;
files to be combined reside in the current default directory. The following
command invokes GXRUPDATE:

$ GXRUPDATE[/qualifier] file-spec

where file-spec is the master cross reference data file. If file-spec is just
Filename, then by default GXRUPDATE combines the .GXR; files and the current
Filename.MXD; file into a new Filename.MXD; file.

GXRUPDATE has the following command qualifier:

F-1 1I

NSWC TR 84-101

1. /GXR-(file-spec[.... 1) - This requests that only the selected files
be used to update the master cross reference data file.

The second step is to transform the master cross reference data file into
a readable global cross reference report. This is done by invoking GXRREPORT
with the following command.

$ GXRREPORTC/qualifier.. .3 file-spec

where filespec is the master cross reference data file produced by the
previous step. The file produced by GXRREPORT is the master cross reference
report, which by default has a .MXR; extension. This report can be examined
and/or printed.

GXRREPORT has the following two command qualifiers:

1. /TITLE-"The User's LEQ 36 Character Title" - This requests that "The
User's LEQ 36 Character Title" be placed on the top of each page of
the report. The default title is "Global Cross Reference Report".

2. /MXRmmxr-file-spec - This requests that the global cross reference
report be placed in mxr-file-spec. Default is Filename.MXR.

This two-step process allows incremental updates to the global cross
reference data. As the need arises to change selected compile units, the .THL
files are changed, compiled using TRICOMP, assembled, and linked. Later, the
global cross reference data files are gathered by invoking GXRUPDATE to do a
partial update to the master global cross reference data file. GXRREPORT is
used to form the new report. The changed compile units is reflected
accordingly in the new report.

The master global cross reference data file is a running record of the
global references in a program. It is important not to delete this file.
Each invocation of GXRUPDATE and GXRREPORT creates a new version of the master
global cross reference data and master global cross reference report files
respectively.

F.1.2 Reading a Global Cross Reference Report

All GLOBAL symbols and symbols declared within insert files are contained
in the Global Cross Reference Report. The symbols are arranged alphabetically
in the report. The first four lines on each page of the Global Cross
Reference Report contain the following header.

F-2

. _ '.• j H I -",ih I I -

NSWC TR 84-101

GLOBAL CROSS REFERENCE The User's LEQ 36 Character Title PAGE I

SYMBOL ATTRIBUTES DEFINED USED IN USED IN REFERENCES
NAME IN DECK DECK PROCEDURE USED CHNG

The SYMBOL NAME column contains up to 9 characters of the identifier.
VAX TRICOMP and MC TRICOMP support 31 character significance so sometimes the
entire identifier cannot be placed in this column. This is known as the nine
character restriction. This restriction is as follows: If the identifier
contains less than 10 characters, then the entire identifier appears in the
SYMBOL NAME column. If the identifier contains more than 9 characters, then
the first 8 characters followed by an asterisk appear in the SYMBOL NAME
column.

The ATTRIBUTES column contains a short description of the identifier
(listed in the SYMBOL NAME column). The ATTRIBUTES column in the Global Cross
Reference Report corresponds to the ATTRIBUTES column in the symbol table.
See the definition of the ATTRIBUTES column in Section E.l. In addition, if
the identifier is not defined as global in any of the compile units contained
in the report, the ATTRIBUTES column contains an X for "external to program."

The DEFINED IN DECK column usually contains the compile unit name in
which the identifier was declared; however, if the identifier was declared in
an insert file, then the DEFINED IN DECK column contains the insert file name
in which the identifier was declared. In this case the DEFINED IN DECK column
also contains an I, indicating this column contains the name of an insert
file. This column has the nine character restriction.

The USED IN DECK column contains a compile unit name in which the
identifier (listed in the SYMBOL NAME column) was used. This column has the
nine character restriction.

The USED IN PROCEDURE column contains the procedure name in which the
indentifier (listed in the SYMBOL NAME column) was used. This column has the
nine character restriction.

The REFERENCES USED coiumn contains how many times the procedure used the
identifier without changing it.

The REFERENCES CHNG column contains how many times the procedure changed
the identifier. Changed identifiers are those that appear on the left-hand
side of an assignment operator. They can also be changed by functions like
PUSH and POP.

The following is an example Global Cross Reference Report.

F-3

NSWC TR 84-101

GLOBAL CROSS REFERENCE The User's LEQ 36 Character Title PAGE 1

SYMBOL ATTRIBUTES DEFINED USED IN USED IN REFERENCES
NAME IN DECK DECK PROCEDURE USED CHNG

ADD P(o) DEMOOPER
DEMOMAIN MAIN I

ELSEIF SYNONYM EXTEND I DEMOMAIN MAIN 4

ENDDO SYNONYM EXTEND I DEMOMAIN MAIN 1

MAIN P (0) DEMOMAIN

OPEN X DEMOAIN MAIN 2

PKB PV DEMOMAIN DEMOMAIN MAIN 1 1
DEMOOPER READINPUT 2

READ X DEMOMAIN MAIN 1
DEMOOPER READINPUT 2

F.2 PROCEDURE CALL TREE REPORT

The procedure call tree report presents an overview of a program's
procedure calling structure. It shows which procedures call which procedures.

F.2.1 Producing a Procedure Call Tree Report

The notation .EXT; implies the highest version for input and the
creation of a new version for output.

The procedure c.all tree report is developed from the tree data files that
result when TRICOMP compiles a compile unit. These files by default have a
.TRE; extension. This report is generated in a two-step process.

The first step is to combine the .TRE; files and the current master
procedure call tree data file into a new master procedure call tree data file.
The master procedure call tree data file by default has a .MTD; extension.
Updating the master procedure call tree data file is done by invoking
TREUPDATE. By default TREUPDATE executes under the assumption that all .TRE;
files to be combined reside in the current default directory. The following
command invokes TREUPDATE:

$ TREUPDATEt/qualifier] file-spec

where file-spec is master procedure call tree data file. If the file-spec is

F-4

NSWC TR 84-101

just Filename, then TREUPDATE combines the .TRE; files and the current
Filename.MTD; file into a new Filename.MTD; file.

TREUPDATE has the following command qualifier:

I. /TRE-(file-spec[, ...3) - This requests that only the selected files
be used to update the master procedure call tree data file.

The second step is to transform the master procedure call tree data file
into a readable procedure call tree report. This is done by invoking
TREREPORT with the following command.

$ TREREPORT[/qualifier...] file-spec

where file-spec is the master procedure call tree data file produced by the
previous step. The file produced by TREREPORT is the master procedure call
tree report, which by default has a .MTR; extension. This report can be
examined and/or printed.

TREREPORT has the following two command qualifiers:

1. /TITLE-"The User's LEQ 36 Character Title" - This requests that "The
User's LEQ 36 Character Title" be placed on the top of each page of
the report. The default title 'Procedure Call Tree Report".

2. /KTR-mtr-file-spec - This requests that the procedure call tree
report be placed in mtr-file-spec. Default is Filename.MTR.

This two-step process allows incremental updates to the procedure call
tree data. As the need arises to change selected compile units, the .THL
files are changed, compiled using TRICOMP, assembled, and linked. Later, the
procedure call tree data files are gathered by invoking TREUPDATE to do a
partial update to the master procedure call tree data file. TREREPORT is used
to form the new report. The changed compile units is reflected accordingly in
the new report.

The master procedure call tree data file is a running record of the
procedure call structure in a program. It is important not to delete this
file. Each invocation of TREUPDATE and TREREPORT creates a new version of the
master procedure call tree data and master procedure call tree report files
respectively.

F.2.2 Readinz a Procedure Call Tree Report

The procedure call tree report shows which procedures call which
procedures. The report is arranged so that each page is divided into two
major columns, each of which has three subcolumns. Each page has a header of
the following form:

F-5

NSWC TR 84-101

PROCEDURE CALL TREE The User's LEQ 36 Character Title PAGE 1

The columns and subcolumns are not marked with headers, but they are obvious
as to where they are. Each of the two major columns are identical, so only
the subcolumns are described. For the purpose of discussing them, the three
subcolumns are assumed to have a header of the following form:

COLUMNI COLUMN2 COLUMN3

Note that these columns contain at most 9 characters. If a procedure or
compile unit name contains less than 10 characters, then the entire procedure
or compile unit name appears in this column. If the procedure or compile unit
name contains more than 9 characters, then the first 8 characters followed by
an asterisk appear in that column.

COLUMNI contains the procedure name. All procedures that are declared
within a THLL program are listed alphabetically in this column.

COLUMN2 contains the following:

G Definition line for a global procedure

blank Definition line for a local (non-global) procedure

procedure name The procedure called

COLUMN3 contains the following:

cu name Compile Unit name in which the current procedure
is defined

blank Called procedure is global

L Called procedure is local to the compile unit and

not global

X Called procedure is not defined within the program,
It comes from a library or non-THLL object.

The called global or local procedure calls no

procedures itself

The following is an example Procedure Call Tree Report.

F-6

AD -A145 116 FELL (TRIDENT HIGHER LEVEL LANGUAGE) REFERENCE MANUAL

(IL NAVAl SURFACE WEAPONS CENTER DAHIGREN VA H G HUBERI JUL 4 NSWC/R-8T- 01

IUC[ASSIFIED F/G 9 / I NI

ENDEu.....son_4

1.0.

NSWC TR 84-101

PROCEDURE CALL TREE The Users LEQ 36 Character Title PAGE

ADD G DEMOOPER
READINPUT L
WRITE X

DIVIDE G DEMOOPER
READINPUT L
WRITE X

MAIN G DEMOMAIN
ADD
DIVIDE
MULTIPLY
OPEN X
READ X
SUBTRACT
WRITE X

MULTIPLY G DEMOOPER
READINPUT L
WRITE X

READINPUT DEMOOPER
WRITE X
READ X

SUBTRACT G DEMOOPER
READINPUT L
WRITE X

F.3 NESTED PROCEDURE CALL TREE REPORT

The nested procedure call tree report presents an overview of a program's
procedure calling structure. It shows which procedures call which procedures
in a nested format.

F.3.1 Producing a Nested Procedure Call Tree Report

The notation .EXT; implies the highest version for input and the
creation of a new version for output.

The nested procedure call tree report is developed from the tree data
files that result when TRICOMP compiles a compile unit. These files by
default have a .TRE; extension. This report is generated in a two-step
process. The first step is to combine the .TRE; files into a Filename.MTD;
master tree data file. This is done by using TREUPDATE as shown above.

F-7

NSWC TR 84-101

The second step is to transform the master procedure call tree data file
into a readable nested procedure call tree report. This is done by invoking
NTREREPORT with the following command.

$ NTREREPORTE/qualifier...] file-spec

where file-spec is the master procedure call tree data file. The file
produced by NTREREPORT is the nested procedure call tree report, which by
default has a .NTR; extension. This report can be examined and/or printed.

NTREREPORT has the following command qualifiers:

1. /TITLE-"The User's LEQ 36 Character Title" - This requests that "The
User's LEQ 36 Character Title" be placed on the top of each page of
the report. The default title is "NESTED PROCEDURE CALL TREE
REPORT".

2. /NTR-ntr-file-spec - This requests that the nested procedure call

tree report be placed in ntr-file-spec. Default is Filename.NTR.

3. /LASER - This requests a report that can be used for laser printing.
This report has extra page ejects that make the laser listing more
aesthetically appealing.

/NOLASER - This qualifier requests a report that will not be used for
laser printing. DEFAULT.

4. /XREF - This requests a list of cross reference tables, one for each
procedure. Each table (for a procedure P) lists in one column all
procedures that P calls and in another column all procedures that
call P.

/NOXREF - This requests that no cross reference tables be listed.
DEFAULT.

5. /LONG - This requests a long tree. In this case the procedures
called by any procedure P are listed for each occurrence of P in the
tree.

/NOLONG - This requests a short (or no long) tree. In a short tree,
the procedures called by P are expanded only once. The next time P
is listed the line number of its first expansion is listed. DEFAULT.

6. /OPT-opt-file-spec - This qualifier requests a tree as directed by
the options contained in the opt-file-spec. The default file
extension is .OPT. This file contains a sequence of option lines and
data lines. An option line contains a / in column 1. A data line
does not contain a / in column 1. The following option lines may be
placed in the option file.

F-8

NSWC TR 84-101

1. /LASER - This option line is the same as the /LASER command
qualifier.

2. /XREF - This option line is the same as the /XREF command
qualifier.

3. /LONG - This option line is the same as the /LONG command
qualifier.

4. /ROOTS - This option line allows the user to declare a set of
root procedures. A procedure call tree is produced for each
declared root. The roots are declared on a sequence of data
lines following the /ROOTS option line. The format of a data
line is:

procedure-name compile unit name

5. /LIBS - This option line allows the user to declare a set of
library procedures. These procedures are not listed in the tree.
If a library procedure is not a terminal node (normally it is)
then the entire subtree of this library procedure is omitted.
The library procedures are declared on a sequence of data lines
following the /LIBS option line. The format of a data line is:

procedure name compile unitname

If the procedure is external to the program, then the
compile unit name must be left blank.

6. /TIPS - This option line allows the user to declare a set of
terminal procedures. These procedures are listed in the tree as
terminal nodes and marked with a "+" meaning a subtree has been
pruned. The terminal procedures are declared on a sequence of
data lines following the /TIPS option line. The format of a data
line is:

procedurename compile unit name

If the procedure is external to the program, then the
compile_unit name must be left blank.

NOTE: The procedure name or compile unit name can be up to 9
characters. If one is longer than 9 characters, it should be listed
on a data line as 9 characters. The first 8 characters listed must
be the first 8 characters of the name and the 9th character must be
an asterisk. For example, suppose a procedure LONGNAKEPROC of
compile unit LONGNAECU is to be on a data line. It should appear as
the following:

LONGNAME* LONGNAME*

F-9

1
-i. . . -

NSWC TR 84-101

A procedure that does not occur as a called procedure is a "root"
procedure. A report is generated for each root that is encountered in the
master procedure call tree data file.

This two-step process allows incremental updates to the procedure call
tree data. As the need arises to change selected compile units, the .THL
files are changed, compiled using TRICOMP, assembled, and linked. Later, the
procedure call tree data files are gathered by invoking TREUPDATE to do a
partial update to the master procedure call tree data file. NTREREPORT is
used to form the new nested procedure call tree report. The changed compile
units are reflected accordingly in the new nested procedure call tree report.

The master procedure call tree data file is a running record of the
procedure call structure in a program. It is important not to delete this
file. Each invocation of TREUPDATE and NTREREPORT creates a new version of
the master procedure call tree data and nested procedure call tree report
files respectively.

F.3.2 Reading a Nested Procedure Call Tree Report

The nested procedure call tree report shows which procedures call which
procedures in a nested format. Each page has a header of the following form:

PROCEDURE CALL TREE The User's LEQ 36 Character Title PAGE 1
MAIN TREE 26-MAR-1984 12:26:19

LINE LEVEL ROUTINE

The LINE column contains a running line number of the nested procedure
call tree report.

The LEVEL column contains the level of the procedure which is defined as

follows:

1. The root procedure is level 1.

2. If procedure A is level N and it calls procedure B, then procedure B
is level N+l.

The ROUTINE column contains the procedure name. This column contains at
most 9 characters. If a procedure or compile unit name contains less than 10
characters, then the entire procedure or compile unit name appears in this
column. If the procedure or compile unit name contains more than 9
characters, then the first 8 characters followed by an asterisk appear in this

F-10

NSWC TR 84-101

column. The procedure name is indented (from the ROUTINE start column) by
[LEVEL-l]*3 columns.

The procedure name contained in the ROUTINE column can be preceded by one
of the following marks:

1. * - This indicates the procedure P is recursive. In this case the

line number of the first occurence of P is enclosed in parentheses
immediately following P.

2. - - This indicates the procedure P is external to the program.

3. + - This indicates the procedure P is a user declared terminal
procedure (via the /TIPS option of the opt-file-spec).

The following is an example Nested Procedure Call Tree Report.

PROCEDURE CALL TREE The User's LEQ 36 Character Title PAGE I
MAIN TREE 26-MAR-1984 12:26:19

LINE LEVEL ROUTINE

1 1 MAIN
2 2 ADD
3 3 READINPUT
4 4 -READ
5 4 -WRITE
6 3 -WRITE
7 2 DIVIDE
8 3 READINPUT
9 4 -READ

10 4 -WRITE
11 3 -WRITE

If the /XREF command qualifier is included on the NTREREPORT command, a
cross reference listing is also generated. Each page of the cross reference
listing has a header of the following form:

PROCEDURE CALL TREE The User's LEQ 36 Character Title PAGE I
CROSS REFERENCE LISTING 26-MAR-1984 12:26:19

P1 CALLS P2 AND IS CALLED BY P3
P4 P5

The procedures in a program are arranged alphabetically. For each procedure P
in the program, there are two columns (arranged alphabetically), the first
listing the procedures called by P and the second listing the procedures that
call P.

F-11

NSWC TR 84-101

The following is an example Cross Reference Listing as produced by
NTREREPORT.

PROCEDURE CALL TREE The User's LEQ 36 Character Title PAGE I
CROSS REFERENCE LISTING 26-MAR-1984 12:26:19

ADD CALLS READINPUT AND IS CALLED BY MAIN
WRITE

MAIN CALLS ADD AND IS CALLED BY NONE

SUBTRACT

READ CALLS NONE AND IS CALLED BY READINPUT

READINPUT CALLS READ AND IS CALLED BY ADD
WRITE SUBTRACT

SUBTRACT CALLS READINPUT AND IS CALLED BY MAIN
WRITE

WRITE CALLS NONE AND IS CALLED BY ADD
READINPUT
SUBTRACT

F-12

NSWC TR 84-101

APPENDIX G

THLL IN THE VAX/VMS ENVIRONMENT

G.1 INTRODUCTION

Filenames under VMS have the format NODE::DISK:[DIR]Basename.EXT;VER.
Basename is the base filename for a set of related files that have different
.EXT extensions. Most VAX programs have a set of conventions governing the
.EXT extensions. This is also true for THLL programs. The user can override
these conventions, but this is discouraged for configuration management
reasons. The organization of a THLL program as presented in this appendix is
not the only organization, but it is a logical one that should be considered
seriously before deviating to another.

G.2 THE TRICOMP COMMAND

THLL in the VAX/VMS environment is implemented by the TRICOMP compiler,
which is invoked by the TRICOMP command. The command TRICOMP translates a
THLL compile unit into VAX MACRO, BP assembler or binary, or MC68000 assembler
code. In addition to creating the object code, TRICOMP creates a listing,
global cross reference data, and procedure call tree data. The command has
the following form:

TRICOMPE/qualifier...] input-file-spec

where input-file-spec specifies the name of the file containing a THLL compile
unit.

G.2.1 Qualifiers

TRICOMP command options are provided in the form of command qualifiers.
Following is a list of qualifiers that can be used with the TRICOMP command.

/VAX

/VAX requests translation of THLL into VAX MACRO code. DEFAULT. Note that if
/VAX is used, it should be the first qualifier. Also note that /VAX, /BP, and

/MC are mutually exclusive.

G-1

-L- Ail_ _ __ _ _ _ _ __ _ _ _ __. .

NSWC TR 84-101

/BP

/BP requests translation of THLL into BP assembly or binary code. Note that
if /BP is used, it should be the first qualifier. Also note that /VAX, /BP,
and /MC are mutually exclusive.

/'C

/MC requests translation of THLL into MC68000 assembler code. Note that if
/MC is used, it should be the first qualifier. Also note that /VAX, /BP, and
/MC are mutually exclusive.

/ALL or /NOALL

/ALL requests that all compile units (in a file) be compiled. Normally, only
one compile unit should be contained in a file. The MACRO assembler assembles
only the first compile unit in the resultant .MAR file. This qualifier is
used mainly in compiler testing.

/NOALL requests that only one compile unit (in a file) be compiled. DEFAULT.

/BIN(-bin-file-spec] or /NOBIN

/BIN requests the BP binary data be placed in file bin-file-spec. The DEFAULT
bin-file-spec is the file name of the input-file-spec with a .BIN extension.
/BIN is valid only for TRICOMP/BP. DEFAULT.

/NOBIN suppresses the BP binary data file. /NOBIN is valid only for
TRICOMP/BP.

/CGOPTS-oct-number

/CGOPTS is used to activate various compiler code generator debug dumps. The
meaning of the various bits in the oct-number is compiler-dependent.

/DEBUG-oct-number

/DEBUG is used to activate various compiler debug dumps in pass 1 and pass 2.
The meaning of the various bits in the oct-number is compiler-independent.

/GXR[-xr-file-specl or /NOGXR

/GXR requests the global cross reference data be placed in file gxr-file-spec.
The DEFAULT gxr-file-spec is the file name of the input-file-spec with a .GXR
extension. DEFAULT.

G-2

NSWC TR 84-101

/NOGXR suppresses the global cross reference data file.

/MAR[-ar-file-spec or /NO.AR

/MAR requests the MACRO assembly data be placed in file mar-file-spec. The
DEFAULT mar-file-spec is the file name of the input-file-spec with a .MAR
extension. /MAR is valid only for TRICOMP/VAX. DEFAULT.

/NOMAR suppresses the MACRO assembly data file. /NOMAR is valid only for
TRICOMP/VAX.

/MCS['mcs-file-spec] or /NOMCS

/MCS requests the MC68000 assembly data be placed in file mcs-file-spec. The
DEFAULT mcs-file-spec is the file name of the input-file-spec with a .MCS
extension. /MCS is valid only for TRICOMP/MC. DEFAULT.

/NOMCS suppresses the MC68000 assembly file. /NOMCS is valid only for
TRICOMP/MC.

/SRC[-src-file-spec] or /NOSRC

/SRC requests the BP assembly data be placed in file src-file-spec. The
DEFAULT src-file-spec is the file name of the input-file-spec with a .SRC
extension. /SRC is valid only for TRICOMP/BP.

/NOSRC suppresses the BP assembly data file. /NOSRC is valid only for
TRICOMP/BP.

/TLS['tls-file-spec]

/TLS requests the TRICOMP listing be placed in file tls-file-spec. The
DEFAULT tls-file-spec is the file name of the input-file-spec with a .TLS
extension.

/TRE[-tre-file-spec] or /NOTRE

/TRE requests the procedure call tree data be placed in file tre-file-spec.
The DEFAULT tre-file-spec is the file name of the input-file-spec with a .TRE
extension. DEFAULT.

/NOTRE suppresses the procedure call tree data file.

G-3

L a i _ _ , -

NSWC TR 84-101

G.2.2 Input To TRICOMP

G.2.2.1 Compile Units (.THL Files) - By default TRICOMP expects a compile
unit in a file with a .THL extension. Each .THL file contains one THLL
compile unit. A .THL file is an input source file that can be maintained with
a VAX editor. It is recommended that each .THL file have a base filename
corresponding to the compile unit name contained in the file.

G.2.2.2 Insert Files (.THI Files) - In addition to the .THL files that
correspond to compile units, a THLL compile unit often includes INSERT files.
An insert file is an input source file that must have a .THI extension. It
can be created simply by editing a file. In order to locate a .THI file
associated with the insert declaration:

INSERT FILENAME(DIRNAME)

TRICOMP searches for DIRNAME in the following order:

1. The VMS logical name table is searched for a definition of DIRNAME.
If it exists, that name is the name of the directory that contains
the FILENAME.THI file. The DEFINE command in VMS is used to
establish this relationship in the logical name table.

2. If DIRNAME is the default identifier, DEFAULT, the current default
directory contains the FILENAME.THI file. DEFAULT could be defined
in the logical name table in which case the check above would have
associated DEFAULT to a (possibly different) directory.

3. Finally, it is assumed that DIRNAME is a subdirectory in the current
default directory.

This approach gives the program designer quite a bit of flexibility.

NOTE

DIRNAME and FILENAME are truncated to 8
characters.

G.2.3 Output From TRICOMP (.TLS, .GXR, .TRE, Object FILES)

The two file types, .THL and .THI, described above are created by the
users as they develop their program. A .THL file contains a compile unit and
is the input file to a single invocation of TRICOMP. The .THI files contain
information to be INSERTed into .THL files during a THLL compilation. TRICOMP
compiles a single .THL file containing a single compile unit and produces four

G-4

NSWC TR 84-101

files. The four files created by TRICOMP contain the following:

1. The compiled listing file. By default this file has a .TLS
extension.

2. The global cross reference data file. By default this file has a
.GXR extension.

3. The procedure call tree data file. By default this file has a .TRE
extension.

4. The object file. This file extension varies according to which
compiler was selected (VAX, BP, or MC68000). See the appropriate
User's Guides (References 1, 2, and 3).

By default the base filename of each of these files is that of the .THL
file containing the compile unit. TRICOMP creates the four output files ;n
the current default directory by appending the above extensions to the
filename of the .THL file. The TRICOMP command qualifiers provide wa to
override the defaults.

G.3 ORGANIZATION OF A THLL PROGRAM

A program written in THLL consists of one or more compile units (along
with the various insert files used by the compile units). A compile unit
corresponds to a module, which is a set of related procedures and data that
can be compiled separately. A single compile unit maps nicely into a single
EDT file. Just as a compile unit maps into a file, a program (which is a
collection of compile units) maps into a directory (which is a collection of
files). Thus, a logical organization for a program written in THLL is one or
more .THL files (each of which contains one compile unit) in a common
directory.

In addition to placing a program's compile units in a common directory,
insert files, listing files, global cross reference files, and procedure call
tree files must be placed somewhere. If the insert files are used only by the
one program, they can logically be placed in a subdirectory of the program's
directory, whereas if the insert files are used by several programs, they can
logically be placed in a parallel directory. For each file in the program's
directory containing a compile unit, there is a listing file, an object file,
a global cross reference file, and a procedure call tree file. By default,
TRICOMP places these files in the current default directory. If a program
consists of a manageable number of compile units, then all of the files can be
left in the program's directory; otherwise the TRICOMP command qualifiers can
be used to distribute them into different (possibly parallel) directories.

G-5
G-5"

NSWC TR 84-101

G.4 $SEVERITY RETURNED FROM TRICOMP

When TRICOMP exits to VMS, $SEVERITY is set to indicate the results of

the compilation. The following values can be found in $SEVERITY.

1. $SEVERITY - 1 implies a normal compilation

2. SSEVERITY = 0 implies normal compilation with compile errors

3. $SEVERITY = 2 implies abnormal compilation

4. SSEVERITY = 4 implies one of the pertinent files could not be found
or opened

Note that if the \\ ABORT directive is contained within a compile unit, then a
$SEVERITY of 0 becomes a 2 and a $SEVERITY of 2 becomes a 4.

G-6

NSWC TR 84-101

INDEX

ABS function 4-6 to 4-7
(-see FUNCTION-) parameters, 6-11

Actual parameter, 1-2, 6-4, 6-11
automatic type conversion, BEGIN, 1-2

6-11 Bit functions
conversion table, 6-11 (-see FUNCTION-)

Allocation mode, 3-1 (CLR.BIT)
(OWN) (FIND.BIT)
(Shared) (SET.BIT)

ALPHA, 3-2 (TEST.BIT)
(-see Type-) (TGL.BIT)
declaration condition codes

examples, 3-3 table of, 9-4
general form, 3-2 Block

specification definition, 1-4, 5-2, E-1
as formal parameter, 6-6 example, 1-5

Alpha variables local to, 1-4, 5-2
length, 3-2 major effects of, 1-4

Arg-list, 6-7 to 6-8, 6-10 nonlocal to, 5-2
ARGCNT structure, 5-2

(-see FUNCTION-) Boolean constants, 2-10 to 2-11
ARGPTR BOUND function

(-see FUNCTION-) (-see FUNCTION-)
ARGSYNCL

(-see FUNCTION-) CAPO function
ARGTYPE (-see FUNCTION-)

(-see FUNCTION-) Case expressions, 4-10
Argument transmission evaluation, 4-10

by reference, 6-4 CASE statement
by value, 6-4 (-see Statements-)
rules, 6-4 Change of control statements

Argument transmission mode (-see Statements-)
(-see Formal parameter-) (EXIT)

ARRAY, 3-3 to 3-5 (GOTO)

declaration (RETURN)
example, 3-4 Character set
general form, 3-4 ASCII, A-3

definition, 3-3 THLL, 2-2 to 2-3, A-i to A-2
specification CLOSE

as formal parameter, 6-6 (-see INPUT/OUTPUT procedures-)
size, 3-4, 6-6 to 6-7 CLR.BIT function

stored in memory, 3-5 (-see FUNCTION-)
Assignment expressions, Comand Qualifiers

4-5 to 4-7 (-see TRICOMP command-)
automatic type conversion, 4-6 COMMENT forms, 2-11
evaluation, 4-6 examples, 2-12
examples, 4-5 COMMON declaration, 7-5 to 7-8

Automatic type conversion, examples, 7-7

Index-i."

NSWC TR 84-101

Compile Time expressions, (SWITCH)
3-19 to 3-20 (SYNONYM)

Compile unit, 1-1, 5-11, G-4 examples, 1-2
Compiler Declarations, 3-1

(-see TRICOMP compiler-) scope of, 1-5, 2-2, 7-5
COMPONENT, 3-7 Del 2iters
ALPHA components, 3-13 (-see Reserved words-)
characteristics, 3-7 table of, 2-6
declaration, 3-8 to 3-11 DEVICE

examples, 3-10 to 3-11 CPRINT, 8-2, 8-13, 8-15
DOUBLE components, 3-8 declaration, 8-1 to 8-2
examples, 3-16 examples, 8-2
Indexed components, ICL, 8-2, 8-14 to 8-15

3-12 to 3-13 KBDSS, 8-2 to 8-3,
INTEGER components, 3-8 8-13 to 8-15
POINTER components, 3-8 MDF, 8-2, 8-13 to 8-15
Predefined components, 3-12 MTF, 8-2, 8-13 to 8-15
preset. 3-14 to 3-16 name table, 8-2
REAL components, 3-8 specification
restrictions, 3-11, 3-13 as formal parameter, 6-5
sign extension, 3-9 SPRINT, 8-2, 8-13, 8-15
use, 3-11 to 3-12 Digits, 2-3
variable, 3-7, 4-3 Directives

Compound statement (-see TRICOMP compiler-)
(-see Statements-) DOUBLE, 3-2

CONC function (-see Numbers-),(-see Type-)
(-see FUNCTION-)

Conditional expressions, ELSEIF, 1-6
4-7 to 4-8 END, 1-2
evaluation, 4-8 ENDDO, 1-6
type, 4-8 to 4-9 Error messages

Conditional statements (-see TRICOMP compiler-)
(-see Statements-) EXEC

Constants, 2-7 (-see PROCEDURE-)
boolean, 2-10 to 2-11 EXEC INTERRUPT
numbers, 2-7 (-see PROCEDURE-)
strings, 2-11 EXIT statement

COS function (-see Statements-)
(-see FUNCTION-) EXP function

CPRINT (-see FUNCTION-)
(-see DEVICE-) Exponent part

Cross Reference map (-see Numbers-)
(-see TRICOMP compiler-) Exponentiation (**)

implementation, B-7
Data declarations, 3-1 Expressions

(-see specific item-) assignment expressions, 4-5
(ARRAY) case expressions, 4-10
(COMPONENT) compile time, 3-19 to 3-20
(INSERT) conditional expressions, 4-7
(PRESET) definition, 1-3, 4-1
(Simple variable) evaluation, 4-4, 4-6, 4-8,
(STACK) 4-10

Index-2

NSWC TR 84-101

examples, 1-4, 4-5 expansion, 8-10
preset expressions, format item, 8-2 to 8-3

3-20 to 3-21 input semantics, 8-4
simple, 4-4 to 4-5 output semantics, 8-5 to 8-6
type, 4-1, 4-5, 4-8 to 4-9 FUNCTION, 1-3, 4-3

EXTERNAL declaration, 7-1 to 7-2 ABS, 9-1
ARRAY, 7-3 ARCCOS, 9-3
COMMON, 7-6 to 7-8 ARCCOT, 9-3
effect and use of, 7-4 ARCSIN, 9-3
examples, 7-2 to 7-4 ARCTAN, 9-3
FORMAT, 7-2 ARGCNT, 6-12, 9-9
PROCEDURE, 7-3 to 7-5 ARGPTR, 6-12, 9-9
scope of, 7-5 ARGSYNCL, 6-13, 9-9
Simple variable, 7-2 ARGTYPE, 6-12, 9-9
STACK, 7-2 to 7-3 argument, 9-9

bit, 9-4
FIND.BIT function BOUND, 9-9

(-see FUNCTION-) CAPO, 9-5 to 9-6
FINIS, 1-2 examples, 10-1
FIX functions CLR.BIT, 9-4

(-see FUNCTION-) CONC, 9-7
FIXD function COS, 9-3

(-see FUNCTION-) COT, 9-3
FIXH function definition, 4-3

(-see FUNCTION-) EXP, 9-3
FIXI function FIND.BIT, 9-4

(-see FUNCTION-) FIX, 9-1
FLOAT functions FIXD, 9-3

(-see FUNCTION-) FIXH, 9-3
Formal parameter, 6-3, 6-5, 6-11 FIXI, 9-1, 9-3

argument transmission, 1-3, examples, 9-2
6-4 FLOAT, 9-1

automatic type conversion, examples, 9-2
6-11 LENGTH, 9-6

block, E-1 LN, 9-3
conversion table, 6-11 miscellaneous, 9-9
definition, 6-3 MLENGTH, 9-6
description, 6-3 MOVEC, 9-6 to 9-7
examples, 6-3, 6-6 to 6-8 numerical, 9-1
specification part, 1-3, table of, 9-2
6-5 to 6-10 ORDERC, 9-7

value part, 6-4 POCA, 9-4, 9-6
FORMAT examples, 10-1
declaration, 8-2 POP, 9-8
examples, 8-6 to 8-9, PUSH, 9-8

8-11 to 8-12 ROAX, 9-5 to 9-6
processing, 8-9 to 8-11 examples, 10-1
specification ROTA, 9-5 to 9-6

as formal parameter, 6-5 SET.BIT, 9-4
Format-list shift, 9-3
definition, 8-2, 8-9 SHIFTA, 9-4
examples, 8-9, 8-11 to 8-12 SHIFTL, 9-4

Index-3

NSWC TR 84-101

SHIFTR, 9-4 examples, 7-7
SIGN, 9-1 purpose, 3-23
SIN, 9-3 INTEGER, 3-2
SQRT, 9-1 (-see Numbers-),(-see Type-)
stack, 9-8 to 9-9 IOWAIT
STACKSC, 9-9 (-see INPUT/OUTPUT procedures-)
STACKWC, 9-9
string, 9-6 to 9-8 KBDSS

examples, 9-8 (-see DEVICE-)
SWA, 9-9
TAN, 9-3 Labeled statement
TEST.BIT, 9-4 (-see Statements-)
TGL.BIT, 9-4 Labels, 2-2, 3-7
type, 4-3 example, 2-2
unvalued, 4-3 LENGTH function

(-see FUNCTION-)
GLOBAL declaration, 7-1 Letters, 2-3

allocation mode, 7-5 LINK
COMMON, 7-6 to 7-8 (-see PROCEDURE-)
effect and use of, 7-4 LINKWORD, 3-20
examples, 7-1 LN function
scope of, 7-5 (-see FUNCTION-)

GOTO statement LOC, 2-4, B-6
(-see Statements-) LOCA, 2-4, B-6

Loop argument, 8-10
HALF, 3-2, 3-4 examples, 8-11 to 8-12

(-see Type-) LOOP statements
(-see Statements-)

I/0 List (IOL) LOOPEXIT
definition, 8-1, 8-3, 8-10 (-see Statements-)
expansion, 8-10
loop argument, 8-10 Machine dependency, 1-1, 1-4,
examples, 8-11 to 8-12 2-3 to 2-4, 2-6 to 2-7,

ICL 2-9 to 2-10, 3-2 to 3-5,
(-see DEVICE-) 3-13, 3-15, 3-17 to 3-21,

Identifier 4-1, 6-4, 6-10 to 6-13, 7-5,
definition, 1-2, 2-6 7-7, 8-13 to 8-15, 9-3,
examples, 2-7 9-6 to 9-7, A-2, B-i,
maximum length, 2-6 B-7 to B-8
scope of, 1-4, 2-2 MDF

INITWORD, 3-20 to 3-21 (-see DEVICE-)
INPUT/OUTPUT procedures, 8-12 Messages

CLOSE, 8-16 (-see TRICOMP compiler-)
IOWAIT, 8-16 ?/LENGTH function
OPEN, 8-12 to 8-13 (-see FUNCTION-)

examples, 8-13 MOD
READ, 8-14 definition, B-3
WRITE, 8-15 restriction, B-3

INSERT MTF
declaration, 3-23 (-see DEVICE-)

INSERT file, 3-23, 7-7 to 7-8,
G-4 NEXTCASE, 1-6

Index-4

NSWC TR 84-101

Notation conventions, 1-5 examples, 1-2, 6-8 to 6-9
NULL statement formal parameter, 6-3

(-see Statements-) (-see Formal parameter-)
Numbers general form, 6-1

integer, 2-8 to 2-9 general properties, 1-3,
examples, 2-8 6-10 to 6-11

real, 2-9 to 2-10 optional arguments,
examples, 2-9 6-12 to 6-13

scaled real, 2-10 procedure body, 1-3, 6-1
examples, 2-10 procedure head, 6-1, 6-9

return value, 6-13
OPEN default, 6-14

(-see INPUT/OUTPUT procedures-) specification
Operands as formal parameter, 6-7
primary, 4-2 specification part, 1-3,

Operator precedence table, 4-4 6-5 to 6-10
Operators typed, 6-3, 6-8, 6-14

table of, 2-5 untyped, 6-8, 6-14
Optional arguments (OPTARG), value part, 6-4

6-12 to 6-13 Proper statement
ORDERC function (-see Statements-)

(-see FUNCTION-) PUSH function
OWN variables, 3-1 (-see FUNCTION-)

POCA function READ
(-see FUNCTION-) (-see INPUT/OUTPUT procedures-)

POINTER, 3-2 REAL, 3-2
(-see Type-) (-see Numbers-), (-see Type-)

POP function Reserved words, 2-1, 2-4
(-see FUNCTION-) delimiters, 1-6, 2-1,

PRESET 2-4 to 2-5
declaration, 3-13 operators, 2-1, 2-4

compound form, 3-14 RETURN statement
simple form, 3-14 (-see Statements-)

examples, 3-17 to 3-19 ROAX function
expressions, 3-20 to 3-21 (-see FUNCTION-)

(INITWORD) ROTA function
(LINKWORD) (-see FUNCTION-)
(SWA)

semantics, 3-14 Scale part
syntax, 3-14 (-see Numbers-)

PROCEDURE Scaled real constants
CLOSE, 8-16 (-see Numbers-)
EXEC, 6-2, 7-5 SET.BIT function
EXEC INTERRUPT, 6-2, 7-5 (-see FUNCTION-)
IOWAIT, 8-16 Shared variables, 3-1
LINK, 6-2, 7-5 Shift functions
OPEN, 8-12 to 8-13 (-see FUNCTION-)
READ, 8-14 (SHIFTA)
WRITE, 8-15 (SHIFTL)

PROCEDURE declarations, 6-1 (SHIFTR)
access part, 6-2 SIGN function

Index-5

NSWC TR 84-101

(-see FUNCTION-) (ORDERC)
Simple variable, 3-2 to 3-3, 4-2 Strings

declaration assignment, 4-6 to 4-7
examples, 3-3 character position, 9-6
general form, 3-2 definition, 2-11

specification examples, 2-11
as formal parameter, 6-5 maximum length, 2-11, 9-6

SIN function Structured programing
(-see FUNCTION-) conventions, 3-7, 5-6, 6-10

Specification part Subscripted variables,
(-see Formal parameter-) 4-1 to 4-2
(-see PROCEDURE declarations-) SWA, 3-20, 9-9

SPRINT SWITCH, 3-6 to 3-7
(-see DEVICE-) declaration

SQRT function effect of, 3-6
(-see FUNCTION-) example, 3-6

STACK, 3-5 to 3-6 general form, 3-6
declaration definition, 3-6

example, 3-6 Symbol, 2-1 to 2-2
general form, 3-5 Symbol tables

definition, 3-5, 9-8 (-see TRICOMP compiler-)
specification SYNONYM

as formal parameter, 6-6 declaration, 3-21 to 3-22
size, 3-5 to 3-6 examples, 1-6, 3-21 to 3-23

stored in memory, 8-11 scope, 3-22
subscripted element, 3-5, 9-8 use, 3-23

STACK functions
(-see FUNCTION-) TEST.BIT function
(POP) (-see FUNCTION-)
(PUSH) TGL.BIT function
(STACKSC) (-see FUNCTION-)
(STACKWC) THLL Program Reports

Statements, 1-3, 5-1 Global cross reference, F-1
Case, 5-3 example, F-4
Change of control, 5-6 to 5-11 production, F-1 to F-2
Compound, 1-5, 5-2 reading, F-2 to F-4
Conditional, 5-3 Nested Procedure Call tree,
examples, 1-4, 5-4 to 5-10 F-7
EXIT, 5-6 to 5-10 cross reference, F-12
GOTO, 5-6 example, F-11
Labeled, 5-1 production, F-7 to F-10
LOOP, 5-4 to 5-6 reading, F-10 to F-12
LOOPEXIT, 5-9 to 5-10 Procedure Call tree, F-4
NULL, 5-6 example, F-7
Proper, 5-2 production, F-4 to F-5
RETURN, 5-10 to 5-11, 6-14 reading, F-5 to F-7

String functions TRICOMP command
(-see FUNCTION-) form, G-1
(CONC) input files, G-4
(LENGTH) output files, G-4
(MLENGTH) qualifiers, G-1 to G-3
(MOVEC) TRICOMP compiler

Index-6

rI

NSWC TR 84-101

$SEVERITY return, G-6 Value part
Cross reference map, (-see Formal parameter-)

E-4 to E-7 (-see PROCEDURE declarations-)
Directives Variables, 4-2

Compiler, C-4 to C-8 allocation mode, 3-1
examples, C-2 component, 4-3
general description, examples, 4-3

C-1 to C-2 simple, 4-2
Listing, C-3 to C-4 subscripted, 4-2
notation, C-2

Messages WRITE
'Error, D-3 to D-10, (-see INPUT/OUTPUT procedures-)

D-12 to D-18
Informative, D-2 to D-3
to batch log, D-1 to D-2
to user's terminal,
D-1 to D-2

Object listing, D-18
Statistics, D-19 to D-20
Symbol table, E-1 to E-4

Type, 3-2, 4-1
ALPHA, 3-2, 4-1, B-1
conversion table, 4-7
DOUBLE, 3-2, 4-1, B-1
HALF, 3-2, 4-1, B-i
INTEGER, 3-2, 4-1, B-1
lowest inclusive common, 4-8
no type, 6-14
POINTER, 3-2, 4-1, B-i
Procedure value, 6-14
REAL, 3-2, 4-1, B-1
Return expression, 5-11, 6-14

Type matrices
Addition, B-2
Assignment, 4-7, B-8
Bit operators, B-3
Division, B-3
Exponentiation, B-7
LOC operator, B-5
LOCA operator, B-6
Logical operators, B-5
Lowest inclusive common, 4-9
MOD operator, B-3
Multiplication, B-3
Parameter conversion, 6-11
Procedure value, 6-14
Relational operators, B-4
Return expression, 5-11, 6-14
Subtraction, B-2
Unary minus, B-2
Unary plus, B-2

Index-7

NSWC TR 84-101

DISTRIBUTION

Library of Congress
Attn: Gift and Exchange Division

Washington, DC 20540 (4)

General Electric Company
Ordnance Systems

100 Plastics Avenue
Pittsfield, MA 01201

Attn: G. Desmarais (6)
1. Fenton (6)

Strategic Systems Program Office
Department of the Navy
Washington, DC 20376
Attn: SP-23115 (C. Chappell) (1)

EG&G Washington Analytical
Services Center

P.O. Box 552
Dahlgren VA 22448
Attn: IMC (2)

Local:
K50-GE (1)
K51 (2)
K52 (12)
K53 (50)
K54 (20)
E31 (GIDEP Office) (1)
E431 (10)

"1(1)

